
1

Long-term View of the Reliability of
Archival Storage Systems

First Step Towards a Reliability-Aware Storage System Manager

Yan Li, Ethan L. Miller
yanli@ucsc.edu, elm@cs.ucsc.edu
Storage Systems Research Center

University of California, Santa Cruz

Abstract—In order for data to be stored reliably for a long
time, their reliability must be under continual monitoring,
because the storage and outer environment are always changing.
Current practices for improving data reliability normally boil
down to creating more copies, with simple quantitative analyses
that either failed to tolerate the complexity of real world storages
or ignored the long term impact of large scale events such as
the earthquake. This paper proposes a systematic approach to
calculate and monitor the reliability of data during their whole
lifetime, and discusses how the output of this model can be used
to improve data’s reliability.

I. INTRODUCTION

As computer systems are taking more and more respon-
sibilities in critical processes, the yearning for a better un-
derstanding of the system’s reliability is ever increasing.
From time to time we hear high profile data loss accidents,
from NASA’s missing Apollo project tapes that contained the
original footage of the Apollo 11 moonwalk [9], online backup
provider Carbonite’s 2004 accident [15] that damaged over
7,500 customer’s data, to the most recent accident of cloud
computing provider Amazon’s loss of about 0.07% data in one
of its Availability Zones within the US East Region in 2011
[14]. These accidents simply mean that our understanding of
storage systems’ reliability is not good enough.

In the real word, many storage system administrators are
still taking the “greedy” approach of “just making more
copies,” without understanding how reliable the data really
are. Because data are normally distributed or backed up to
several storage systems of different characters, as shown in
Figure 1, and there’s no easy way to understand the reliability
of data in such a complex solution.

Moreover, storage systems and devices change over time:
broken parts will be replaced, new expansion modules will
be installed if more spaces are needed. Traditional reliability
studies focused on understanding devices and systems, but
there’s no established way to calculate how safe the data are
in a complex real world storage solution. In the rest part of
the paper we will use “reliability of data” to mean the safety
of data.

Generally speaking, factors that contribute to the evolution
of a storage solution into a heterogeneous system include but
are not limited to:
• Technology obsolescence: old vendors may go away,

spare parts for old devices are no longer produced.

• Leveraging new technology for better performance and
cost reduction: new storage products are introduced to the
market everyday, therefore it’s natural for the end-user to
pick up the most cost-effective model when replacing old
parts. [11]

• Resource constraints: budget, power, rack space, staff, etc.

Understanding the reliability of data is important because
we all know it’s a big problem if the actual safety of data is
lower than expectation, but too high a safety is also a problem,
which means money is wasted on unnecessary devices. The
reliability of data might be much lower than what people
perceives, as we illustrate in the study: older devices have
much lower reliability than new devices, therefore if a very
important data object happened to be stored in two old devices,
it’s reliability maybe very low even though there are replicas.
Additionally, rare but large scale events such as earthquake
can also have a great impact on the reliability of data.

This problem is especially important for archival storage
systems. Although archival storage systems are designed to
run for a very long time, many new solutions and algorithms
are being proposed every year, as it is still a young and
hot research area. Therefore in this background, institutions
that deploy these kind of archival storage systems expect to
upgrade and expand their installed systems from time to time,
or deploy new systems when they become available.

This paper proposed a systematic way to solve this problem,
instead of using a microscope and studying the reliability of
a device or a system, we step back to have a broader view,
in order to quantify the reliability of data objects stored in
many storage systems at the same time. The contribution of
this paper includes:

1) A model to calculate the reliability of data objects stored
on many storage systems, this model is practical enough
for being used in real world data center management

2) Using Reliability Transition Function to calculate re-
liability of a storage system from the reliability of
underlying devices

3) Combining the device’s reliability model and
S.M.A.R.T. events in calculating the reliability of
devices

4) Quantifying the impact of large scale events, such as
earthquake, on the reliability of data

5) Using the result from this model to reduce the cost

2

Device 1 Device 2 Device 4Device 3

Storage System Controller A

Device 1 Device 2 Device 3

Storage System Controller B

Data
Object

Copy 1 Copy 2

Offline
Backup

☁
Cloud

Storage

Copy 3 Copy 4

Fig. 1. A Heterogeneous Storage Solution

of storage systems and achieve better reliability by
improving data layout and scrubbing algorithm

The rest of the paper is organized as follows: section II
introduces the background of reliability analyses and archival
storage system; section III introduces the model, from the
metric we picked (III-B) to modeling the aging of devices
(III-D) as well as large scale events (III-E). For each category
of events, we discuss its impact to reliability, how it can be
modeled and how to get statistic data to support the model
from empirical events data collected from the field. In section
IV we discuss the application of the model and the need to
build a reliability-aware storage system manager.

II. BACKGROUND

In the storage system research area, there is a rising trend
to take reliability of storage more and more seriously due to
regulations like Sarbanes-Oxley Act of 2002, which demands
that important business data must be retained for a period of
time. Emerging cloud storage vendors promote the shift of the
burden of curating data from clients to them as a key compe-
tition advantage over old in-door storage solutions. Moreover,
understanding the reliability of data is especially important for
archival storage systems used in digital preservation, because
the most important design goal for an archival storage system
is to ensure the survival of the data for a very long period of
time, or forever. The whole idea of archival storage would be
meaningless if the reliability of the data can’t be guaranteed.

Since Patterson and Gibson’s work on RAID [10], MTTDL
has been widely used in both the research and industry as a
standard metric for analyzing the reliability of storage systems.
However, as Greenan et al. [8] pointed out that MTTDL is an
expectation of time to fail over an infinite interval, which is
good for quick, relative comparison, but not very meaningful
for understanding the real reliability of data. To address this
issue, he proposed to use NOmalized Magnitude of Data Loss
(NOMDL) for measuring the reliability of systems. NOMDLt
is the expected amount of data lost (in bytes) in a system
within time t normalized to the system’s usability capacity.
The importance of this study is that it brought the size of data
into the study and calculation of reliability.

At the lowest level of a storage solution lies the devices.
Traditional rotating magnetic platter hard drive is a complex

system and lots of studies revealed many characters of its
reliability. The work of Pinheiro et al. [11] and Schroeder
et al. [12] provides real world data of the hard drive’s failure
pattern.

Up to the system level, Markov models are used widely for
modeling, and it is suitable for analyzing a system if status of
the system can be precisely defined. Within this category, a lot
of study has been done using both analytical and simulation
methods [8], [6], [2], [5].

III. THE MODEL

A. Terminology and Assertions
The following terms are used in this paper:

Data object (DO) The smallest unit of information. A DO
is itself meaningful and can’t be broken down further.
Therefore changing one bit of a DO can destroy it. In
file based systems, files can be directly treated as DOs.

Device A physical device that stores bits. Common stor-
age devices include hard drive, solid state drive (SSD),
portable USB thumb drive, etc. It’s worth noting that in
this paper’s context, removable media are also devices.
Since it’s a common practice to store DOs to both online
and offline backup media, unifying both kinds of storage
under the name “device” helps us address the calculation
of reliability in a coherent way.

Device property A physical property of a device that can be
measured and tracked. For a rotating-plate hard drive,
the properties may include: power cycle count, head
load/unload count, seek error rate, read error rate, power
on hours, etc. Device properties vary from device to
device, for example, an SSD device can also have the
property power on hours, but head seek error rate is
meaningless for it.

Storage system A storage system consists of storage devices.
A storage system can be roughly seen as one or more
controlling unit plus one or more devices. An online
storage service provider is also seen as a storage system
in this paper, just it doesn’t have any physical device that
we can track. Storage system is abbreviated as “system”
in most cases in this paper.

Storage solution A storage solution (or just solution) consists
of storage systems. It is the whole solution a company

3

(or an individual) deploys to store its data. As we have
talked in the introduction section and shown in Figure 1,
most solutions consist of several storage systems and are
always changing.

Time Time in this paper flows continually from 0. The
variable’s unit is hour in practical calculation and charts.

The relationship between storage devices, systems and so-
lution can be expressed as:

1) DOs are kept in one storage solution
2) A storage solution consists of one or more storage

systems, which can be from one or more vendors
3) A storage system consists of one or more storage devices
There’s no perfect model that can precisely reflect the

impenetrable world, but in order to make our model useful
for guiding the management of DOs and systems, we make
this assertion for the calculation of reliability: we always aim
at the theoretical lower bound. Instead of trying to get a precise
reliability by using complex simulation models, we decide
to use analytical model to get the theoretical lower bound
of reliability. This is because the purpose of calculating the
reliability in this paper is to guide the solution design and
deployment. It’s not bad if the system performs better than the
model predicted. But it will be a disaster if the model predicts
your data is safe but the system falls apart unexpectedly.
Therefore instead of using simulation methods that require
too much simplification and may ignore the complexity of the
problem, we choose to use the analytical method and aim at
getting the theoretical lower bound of the reliability.

We also have to point out that even though we are aiming
at “lower bound” there’s no way to guarantee that we can
get it, because the more threats are considered, the lower the
calculated reliability is, and it is impossible to cover all threats.
That’s why we call it “theoretical lower bound.” In order to
get a better lower bound, we should cover all major threats
and carefully choose the calculation method we use.

The second assumption is that we use Data Object (DO)
as the basic unit of stored digital data. As described above,
DO is the smallest unit of data that preserves the meaning and
further diving a DO is meaningless. Therefore even changing
one bit of a DO corrupts it.

B. Data Object’s Reliability

From end-user’s point of view, it’s nature that users care
more about their data rather than the life of a storage system.
If a storage system goes down, as long as the data is backed
up somewhere else, the user just need to fix or replace the
broken system. On the contrary, loss of a data object might
be a big threat to the user’s business goals.

However, in literature, the reliability of a data object is often
treated as equal to the reliability of a storage system, as we
can see in the introduction and background section. In most
cases, that’s not true.

We begin by giving the formal definition of Data Object’s
Reliability (DOR) used in this paper. The DOR of a data object
is defined as:

the probability that a data object will survive during
a specified period of time under stated conditions.

Mathematically, it can be expressed as:

DOR(t) = Pr{T > t} =
∫ ∞
t

f(x) dx (1)

f(x) is the failure probability density function and t is the
length of the period of time (which is assumed to start from
time zero).

If the user has only one copy of an object stored in one
storage system, then the upper bound of the reliability of the
data object is the reliability of that storage system. It’s an
upper bound because you can’t expect the object to survive if
the storage system fails. However, it’s also wrong to assume
that this upper bound can be achieved because there are many
events that can destroy the storage device such as device losses
and earthquake that the storage system’s designers won’t take
into consideration when calculating their system’s reliability,
even though they all contribute to the lowering the DOR to
below the storage system’s reliability. Section III-E discusses
the modeling of large scale events.

When one storage system cannot meet the always increasing
demand of the user, it will be expanded or new systems
will be deployed along with the old system. In this process,
data objects will be migrated from the old system to the
expanded or new system, and they will reside on more
than one storage systems. Assume that the DO resides on
n storage systems, and the cumulative distribution function
(CDF) of these systems’ failure rates are expressed by function
F1(t), F2(t), · · · , Fn(t). The DOR can be expressed as a
function of them:

DORn(t) = g(F1(t), F2(t), · · · , Fn(t)) (2)

In the simplest form, the failure of these systems are
uncorrelated (we will discuss large scale events that can affect
more than one systems in section III-E later), and the object
will only be lost if ALL of these n storage system fail. The
CDF for this event can be expressed as:

Fn(t) =

n∏
i=1

Fi(t) (3)

And the DOR can be expressed as

DORn(t) = 1−
n∏
i=1

Fi(t) (4)

= 1−
n∏
i=1

(
1−Ri(t)

)
(5)

Because, for a device, the CDF of failure rate F (t) and the
reliability (a.k.a. survival rate) R(t) have this simple relation:
F (t) = 1−R(t), in the following discussion we will use F (t)
or R(t) depends on the simplicity of equation.

In next section, we will discuss how to find these functions
for a given system.

C. Reliability Transition Function

Consider the storage systems’ configuration shown in Figure
1, the DOR depends on the reliability of Storage System

4

Controller A (RsysA), which in turn depends on the relia-
bilities of underlying devices. We propose to use a function
called Reliability Transition Function (RTF) to denote this
relationship. Suppose the reliability of the underlying devices
are Rdev1(t), Rdev2(t), · · · , RdevN(t), RTF can be defined as:

RsysA(ObjID, t) =

RTFsysA

(
ObjID, Rdev1(t), Rdev2(t), · · · , RdevN(t)

)
(6)

In the above equation, ObjID is the DO’s ID, which can
be used by the storage system to identify a DO. It is needed
because different DOs can be stored on different devices even
within the same system. In calculation, only the devices where
the DO resides are considered, other devices will be ignored
by RTF.

RTF describes the reliability of a single storage system and
it can use either analytical or simulation method to implement.
Greenan et al. [7] shows that this task can be complex for
even relatively simple systems, and in order to get the precise
reliability of a storage system some simulation methods must
be used. With simulation, the precise reliability of a system
can’t be expressed in the close form, but instead the simulation
must be run for each point in time. In practice, it’s not
unusual that the DOR of millions objects have to be tracked
and calculated, therefore using simulation method may not be
possible.

For commercial storage systems that use proprietary algo-
rithms, we expect the storage system vendor to provide this
RTF to enable end-users to calculate the DOR. We proposed
that before a new storage system is purchased and deployed,
the user should require the system vendor to provide RTF
for this specific device. Even better, the vendor can provide
two or more RTFs, one of them can use simulation method
and be precise and the other can be fast using some form of
approximation.

Here’s a sample showing the RTF of a DO stored on an
erasure code based system that divides the object into m
fragments and recode them into n copies (n > m). This
category covers most RAID systems. For the data to survive, at
least m devices must survive, which means in order to destroy
the data, at least n−m+ 1 drives must fail. Remember that
we are looking at the storage system as a dynamic system, of
which one drive might fail and a new drive might be added
at any time. Therefore the R(t) of the system’s drives are not
identical. Our task to get the DOR has not becoming much
harder with this dynamic view because we are only aiming at
the lower bound. We state that the RTF for an n/m erasure
code based system can be expressed as:

RTF(ObjID, t) = 1−
n−m+1∏
k=1

(
1−Rk(t)

)
(7)

Rk(t) is the n − m + 1 devices that have the lowest R(t).
In order to calculate the value of DOR, the n devices will be
sorted according to their R(t) and only the lowest n−m+1
of them are used in the above equation.

Should de-duplication is used in the storage system, relia-
bility of DO will be affected. Due to the normally proprietary

nature and subtleties in implementation, the requirement for
the storage system vendor to provide the RTF is overwhelming.

Again, here our goal is to get the lower bound of these sys-
tem therefore we can use some simple form of the equations.
If the precise reliability is expected, simulation based methods
might have to be used.

With RTF, we can expand our previous DOR equation (5)
to:

DOR(ObjID, t) =

1−
n∏
i=1

(
1− RTFi

(
ObjID, Rdevi(t)

))
(8)

Now let’s continue to the lower level of the storage solution
and take a look at how to get a good expression of Rdev(t).

D. Modeling Devices

Among the reasons that lead to the failures of devices
in a data center, aging is the biggest contributor, and there
are extensive analyses of hard drive’s reliability [12], [11],
[4]. A Weibull reliability model gives good results in recent
researches [12], [5] and it reflects both failures from infancy
mortality and aging. With the Weibull model, the reliability
function of a hard drive is R(t) = e−(t/η)

β

, where β is the
shape parameter and η is the scale parameter.

In a simple example, the devices used for storing objects
are hard drives and the DOs are mirrored among them as in a
RAID1 system. Without considering the bit rot events, apply
equation (5) and we get the DOR for a DO resides on n hard
drive:

DORn(t) = 1−
n∏
i=1

(
1− e−(

t
η)
β
)

(9)

Figure 2 illustrates the effect of device aging. The solid blue
curve shows DOR of an object stored in a two-HD mirrored
RAID1 system using two new hard drives, and for comparison,
the dashed red line curve shows the DOR if one of these two
hard drives is a four year old one at the beginning of the
experiment.

The reliability of equation (9) is only an upper bound that
can never be reached because we have yet considered many
other failure events.

It is possible to use more complex methods than that of
equation (5) to get a more precise DOR, as proposed by
Greenan in [6], but they are much more harder to model
than the analytical model used here, because in order to use
the Markov model, the time to recover from a system failure
must be known or following a known possibility distribution.
For some well engineered storage system, this estimation is
possible. However, if a whole storage system in a company’s
data center goes down, normally the system admin has to rely
on the vendor’s customer support staff to diagnose and repair
the failed system, and the time of which is nigh impossible
to predict. The point here is that instead of focusing on the
precise modeling of the internal of a complex storage system,
we use a simple but effective way to get the lower bound of
reliability of DOs stored in more than one system.

5

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

t (year)

D
at

a
O

bj
ec

t R
el

ia
bi

lit
y

(D
O

R
)

Two new HDs
One new HD and one 4−year old HD

Fig. 2. DOR of object stored in mixed old and new hard drives, Weibull
model, β = 1.12, η = 100, 000 hr

E. Modeling Events

“Event” is a thing that happens and is interesting to the
study of systems and devices’ reliability. We observe and
study events and how they change systems and devices.
This helps us to understand the storage solution during it’s
whole lifetime. We classify events into two categories: failure
events and operational events. Failure events include device
failures, natural disasters, device losses and bit rot; operational
events include normal and abnormal operations of devices and
systems that affect their life, such as power cycle, disk head
load/unload, surface scan error and erasing a block of SSD.

1) Failure events: The failures of devices have been studied
extensively in literature and are covered by the reliability
CDF functions we covered above. As such, we start from
quantifying events that fall out of normal device and system
vendors’ consideration.

There are many kinds of disastrous large scale events that
could destroy all storage systems located in one place, such
as earthquake, fire, flood, military actions, etc. Among them,
earthquakes are a relatively well studied and powerful disaster
that can easily destroy the whole building where all the
devices are located. Whether the earthquake at a location is
a memoryless event or not is still debatable in the academia,
but for analyzing the risk of future earthquake, it’s enough to
treat earthquake as events in a memoryless Poisson process
[3]. This assumption leads to the exponential distribution
P(t) = 1 − et/M , where M is the mean time between
earthquakes. In order for a DO loss to happen, either all storage
systems the object resides on go bad (described by equation
(9)) or one earthquake happens. The possibility for either of
them to happen can be calculated by using the inclusion-
exclusion principle P(A1∪A2) = P(A1)+P(A2)−P(A1∩A2).
Applying equations (3) and the possibility distribution of
earthquake, we can get the DOR when we take the impact
of earthquake into consideration:

DORn(t) = 1−
(
Fn(t) + Feq(t)− Fn(t)× Feq(t)

)
(10)

where Fn(t) is the combined failure rate of all devices and
Feq(t) is the happen rate of earthquake.

An earthquake seems to be a very rare event. In order to
show it’s impact, let’s use the sample configuration we have
discussed above in section III-D, a two-HD mirrored RAID1
system stored in one building that can be destroyed by a single
earthquake, and assume these devices are located somewhere
in California, USA. According to Akçiz et al. [1], the average
time interval between the last six earthquakes that ruptured the
San Andreas fault in the Carrizo Plain is 88±41 years. Using
equation (10), the impact of earthquake is shown in Figure 3.

0 2 4 6 8 100.5

0.6

0.7

0.8

0.9

1

t (years)

Da
ta

 O
bj

ec
t R

el
ia

bi
lity

 (D
O

R)

Control (2 HD Mirror)
Stored at the same place
Geo distributed

Fig. 3. Impact of earthquake on DOR

The solid blue line curve shows the DOR without consid-
ering the impact of the earthquake, and the dashed red curve
shows the result of equation (10) after considering the impact
of earthquake. To mitigate the threat of earthquake, the most
straightforward practice is to deploy the storage systems in a
geologically distributed way, such as one storage server in San
Francisco and another one in New York. Then we can assume
one earthquake can only destroy a single storage system, the
data loss can only happen if one of the following four events
happens:

1) Both hard drives failed
2) Hard drive A failed and B destroyed by earthquake at

New York
3) Hard drive A destroyed by earthquake at California and

B failed
4) Both hard drives are destroyed by two earthquakes

The overall possibility can be calculated by using inclusion-
exclusion principle. The result is shown in Figure 3 by the
green dashed dot line curve. As you can notice, it’s slightly
more reliable than the red dashed line curve, but still the
impact on the DOR even when the storage systems are
geologically distributed can’t be ignored.

To generalize the equation into calculating the DOR when
we consider m kinds of events that can wipe out all storage
devices, we can use the general case for inclusion-exclusion

6

principle and written it in this closed form:

DORm(t) = 1−
m∑
k=1

(−1)k−1
∑

I⊂{1,...,m}
|I|=k

FI(t) (11)

2) Operational events: Besides events that can destroy the
whole storage systems, more often we see smaller events that
are not that serious. For example, most modern hard drives
are shipped with the “Self-Monitoring, Analysis and Reporting
Technology” (S.M.A.R.T.) monitoring system, which collects
internal events and running status that can be queried by
the system. S.M.A.R.T. records events that have been found
to affect the reliability of the storage device in a previous
study [11].

S.M.A.R.T. collects a plethora of raw information, so first
we should try to identify those that are useful for our analyses,
then we should use them to define some polices, hoping
this can reduce the cost and/or improve the precision of the
calculated system reliability.

One of the events that S.M.A.R.T. records is “Scan Error”.
Modern hard drive scans the disk surface during idle time.
Getting a “Scan Error” doesn’t mean the drive is broken or
data is lost. In fact, if the S.M.A.R.T. data of a hard drive
is not constantly monitored by some process in the operating
system, these kind of event may never be discovered. Large
number of “Scan Error” events indicates surface defects and
are believed to lower the predicted device reliability. Pinheiro
et al. [11] found that the group of drives with scan errors are
ten times more likely to fail than the group with no errors.
Using this data, if we know the CDF of a hard drive is F (t)
and we observe a Scan Error event through it’s S.M.A.R.T.
interface, we know we should adjust it’s reliability to 1/10 of
the previous value. Hence it’s new CDF is:

Fnew(t) = 1− R(t)

10

= 1− 1− F (t)
10

It is worth noting that according to previous studies by
Pinheiro et al., S.M.A.R.T. data alone can’t be used effectively
to predict future failures [11]. In this paper’s context, we
are calculating the lower bound of DOR, and in this case,
S.M.A.R.T. events can be a good indicator since there’s high
enough correlation between device failure rate and some of
the error events listed above.

Generally speaking, this category of events contains many
kinds of operations that can be tracked and used in the
calculation of DOR. It’s formal mathematical definition can
be expressed as: say we know event K’s effect on the device’s
reliability can be calculated by using function Ek(), and the
CDF of the device is F (t), then the new CDF of the device
after event K happens is:

Fnew(t) = 1− Ek(1− F (t))) (12)

And after a series of event from 1 to K, their whole effect on
F (t) can be calculated by using:

Fnew(t) = 1− Ek(Ek−1(· · ·E1(1− F (t))) (13)

Equation (13) can be combined with our previous DOR
equation (8) so we get:

DOR(ObjID, t) =

1−
n∏
i=1

(
1− RTFi

(
ObjID, Ei

(
Ri(t)

)))
(14)

Equation (14) is our final equation for computing DOR
and it covers both the aging of devices and two categories
of events’ impact to the DOR.

3) Events that Shouldn’t Be Included: The nature of ana-
lyzing the DOR, which are stored on more than one storage
systems, leads to the reconsideration of some common events
used in reliability analyses.

Bit rot is an event that falls within this category. In the study
of any storage system that runs for more than a few years or
employs more than a few dozens of devices, the impact of bit
rot must be taken seriously. However, the impact of bit rot
event should already be covered by the Reliability Transition
Function as described in section III-C.

Obviously, for the rare cases when the DOs are stored
directly on bare metal drives (and there’s no RTF), the bit
rot event must be taken into consideration when calculating
the DOR.

F. Tracking events

With the model of events, the important task is to track
them. By incorporating the knowledge of every event hap-
pened we can have a better understanding of the DOR.

Suppose we have a DO that is stored in two (or three)
systems, and at time t1 one of the systems failed. Suppose
the system’s reliability follows Weibull distribution. The DOR
of this object can be calculated by using equation (9), as shown
in Figure 4.

Now if the failed system is replaced at time t2 (t2 > t1),
what would the DOR look like? We should aware that if the
newly installed system is a brand new system, it’s reliability
function should take t− t2 as parameter. Therefore the DOR
after the new system is installed is:

DOR(t) = 1− F1(t) ∗ F2(t− t2)

And the graph of it is shown in Figure 4 too.
As can be observed in Figure 4, the DOR drops more

quickly after t2 than that at the beginning because after t2 the
system becomes a heterogeneous system consists of one old
system and one new system, and the new combined reliability
doesn’t equal to the that of two brand new systems. With a
chart like this, the users will have a better understanding of
the reliability of their data after a series of events.

G. Learn the failure pattern

A key factor for getting a correct DOR lies in getting
the correct lower bound of reliability of a devices (the R(t)
function). In previous samples we used the empirical value for
the Weibull distribution parameters. However, other research
on the failure pattern of large amount of hard drives shows

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

One system broke at t
1

One new system installed at t
2

t (hours)

D
a
ta

 O
b
je

c
t
R

e
lia

b
ili

ty
 (

D
O

R
)

start with 2 systems

start with 3 systems

Fig. 4. Effect of one system failure and repaired later

that hard drive’s reliability differs greatly from one brand to
another, or even from one shipment to another [11]. In this
section we propose that data can be gathered from the field
during a storage system/device’s life time to fine tune our
calculation of DOR.

When a storage system is deployed and the initial DOR is
to be calculated, we can normally get the MTTF value straight
from a device’s specification. However, in most cases the
vendors failed to specify what kind of failures they considered
when calculating “Mean Time to Failure”, and what’s more
irksome is that in the field the replacement rate of hard drives
is generally much higher than the value calculated from the
vendor’s MTTF [12].

With these considerations in mind, we propose the following
method to tune the reliability function of a device.

We divide the devices into groups by their shipment because
previous studies show hard drives from the same shipment
show similar failure patterns. Let N be the count of failures
we observed, Ti (1 < i ≤ N) be the lives of these N failed
devices. Using the Weibull model as described in equation (9),
we adjust the scale parameter η in this way:

η =
100, 000× α+

∑N
i=1 Ti

α+N

α (α ≥ 1) is the weight parameter of the empirical value. The
larger α is, the more weight the empirical value has over the
field gathered data.

Here we demonstrated how we calibrate the R(t) for
rotating platter hard drive. Similar analysis can also be done
for other storage devices such as NVM-based devices, and we
just need the different CDF and initial empirical value.

IV. APPLICATION AND FUTURE WORK

This model has laid the foundation for future work. We
are currently studying the possibility of designing a smart
data layout algorithm. Greenan [7] proposed that when de-
signing erasure code-based system and heterogeneous devices
with different reliabilities are mingled, the reliability of data

varies among different layout algorithms. Similar phenomena
also exists when not only heterogeneous devices but also
heterogeneous systems are deployed. Therefore one of our
future study goals is a more general “reliability-aware layout
algorithm” which not only considers the reliability of data
but also cost constraints. DOs will be grouped according to
their importance. For example, metadata are normally more
important than normal data objects. In the simplest form, for
better reliability, we can store the high priority DOs to new
devices, which are supposed to have better reliability. Less
important DOs will be kept on old devices or with fewer
replicas. Because old devices can be used safely because we
know important data won’t be stored on them, this layout
algorithm also has the benefit of reducing cost of storage
systems.

Another application is adjusting scrubbing (Schwarz et
al. [13]) interval according to DOR. Scrubbing is very impor-
tant for preventing bit rot in archival storage system. But too
much scrubbing is also harmful. Therefore intuitively shorter
scrubbing interval is needed for aging devices and systems.
Understanding the DOR helps us fine tuning the scrubbing
interval for each device.

We are also planning to build a Reliability-Aware Storage
System Manager. Storage System Manager plays a very impor-
tant role in today’s enterprises for helping more efficient usage
of the storage systems and reducing both cost and downtime.
However, the current designs haven’t taken reliability into
consideration. To let the user have a better understanding of
the DOR, an interface that can display the graph of DOR is
needed. When all the methods we proposed above are used
in the calculation, even getting the graph of one DOR can
be tedious. Therefore a computer system should be designed
and built to automate this task. Our initial design is shown in
Figure 5.

Simply speaking, the “Reliability Monitor” should imple-
ment the algorithms we have discussed in previous chapter.
It monitors and collects field data from each device in use,
send them through Reliability Transition Functions of Storage
Systems and apply events’ probabilities, and finally generates
a continual updating “Reliability View”, which can be used
by the user to monitor the dynamic changes of reliability
of data objects. When an event occurs, the event data will
be automatically picked by the Reliability Monitor from the
device if they are device-related events, or input by system
admin if they are external events and the reliability view will
be updated in real time.

It is also possible to let the Reliability Monitor handle future
events. For example, when one data center is planned to be
taken offline and transport to somewhere else, the possibility
for device damage during transportation is much higher than
when they are kept under a roof. Therefore this planned action
and related events should be inputted into the Reliability
Monitor as part of the planning process, to ensure the DOR
is kept at the expected level during the whole transportation
duration.

8

Storage System Controller A

Reliability-aware
layout algorithm

Storage System Controller B

Reliability Monitor

Offline
Backup

Device 1 Device 2 Device 3 Device 1

☁
Cloud

Storage

Device 2 Device 3

Data Ingestion

Metadata
DB

New data objects

Reliability View

Fig. 5. Reliability-aware Storage System Manager

V. CONCLUSION

The conclusion of this research is that for end-users, un-
derstanding the reliability of data is more important than
understanding the reliability of systems or devices. The model
proposed in this paper is a systematic approach for calculation
the Data Object’s Reliability. Also a large amount of device
information, which should be useful in understanding the
storage systems is lost everyday because there is no established
effort on gathering and processing them. We propose to build
a reliability-aware storage system manager to gather and use
these information for better understanding the reliability of
data.

ACKNOWLEDGMENTS

We would like to thank the faculty and students of the
Storage Systems Research Center for their help and guidance.
Support for this research was provided by SSRC industrial
partners, including Engenio, Hewlett Packard, IBM, Intel,
Microsoft, Network Appliance, Rocksoft, Veritas, and Yahoo!.

REFERENCES

[1] Sinan O. Akçiz, Lisa Grant Ludwig, J Ramon Arrowsmith, and Olaf
Zielke. Century-long average time intervals between earthquake ruptures
of the San Andreas fault in the Carrizo Plain, California. 38:787–790,
September 2010.

[2] Alvin M. Blum, Ambuj Goyal, Philip Heidelberger, Stephen S. Laven-
berg, Marvin K. Nakayama, and Perwez Shahbuddin. Modeling and
analysis of system dependability using the system availability estimator.
In Proceedings of the 24th International Symposium on Fault-Tolerant
Computing (FTCS ’94), pages 137–141, 1994.

[3] Yousef Bozorgnia and Vitelmo Victorio Bertero. Earthquake engineer-
ing: from engineering seismology to performance-based engineering.
CRC Press LLC, 2006.

[4] Jon G. Elerath. Specifying reliability in the disk drive industry: No more
MTBF’s. In Proceedings of 2000 Annual Reliability and Maintainability
Symposium, pages 194–199. IEEE, 2000.

[5] K. Gopinath, Jon Elerath, and Darrell Long. Reliability modelling of
disk subsystems with probabilistic model checking. Technical Report
UCSC-SSRC-09-05, University of California, Santa Cruz, May 2009.

[6] Kevin M. Greenan. Reliability and power-efficiency in erasure-coded
storage systems. Technical report, University of California, Santa Cruz,
December 2009.

[7] Kevin M. Greenan, Ethan L. Miller, and Jay J. Wylie. Reliability of flat
XOR-based erasure codes on heterogeneous devices. In Proceedings
of the 2008 Int’l Conference on Dependable Systems and Networking
(DSN 2008), pages 147–156, June 2008.

[8] Kevin M. Greenan, James S. Plank, and Jay J. Wylie. Mean time to
meaningless: MTTDL, Markov models, and storage system reliability.
In Proceedings of the 1st Workshop on Hot Topics in Storage and File
Systems (HotStorage ’10), 2010.

[9] Nell Greenfieldboyce. Houston, we erased the Apollo 11 tapes.
National Public Radio, http://www.npr.org/templates/story/story.php?
storyId=106637066, July 2009.

[10] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In Proceedings of the
1988 ACM SIGMOD International Conference on Management of Data,
pages 109–116. ACM, 1988.

[11] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Fail-
ure trends in a large disk drive population. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies (FAST), February
2007.

[12] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you? In Proceedings of
the 5th USENIX Conference on File and Storage Technologies (FAST),
pages 1–16, February 2007.

[13] Thomas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long,
Andy Hospodor, and Spencer Ng. Disk scrubbing in large archival
storage systems. In Proceedings of the 12th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS ’04), pages 409–418, October 2004.

[14] The Amazon Web Services Team. Summary of the Amazon EC2 and
Amazon RDS service disruption in the US East Region. Amazon Web
Services, http://aws.amazon.com/message/65648/, April 2011.

[15] Robert Weisman. Data backup firm sues 2 hardware suppliers. The
Boston Globe, March 2009.

