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Abstract

Bayesian Inference for Mean Residual Life Functions in Survival Analysis

by

Valerie A. Poynor

In survival analysis interest lies in modeling data that describe the time to a particular

event (e.g., failure of a machine or relapse of a patient). Informative functions, namely

the hazard function and mean residual life function, can be obtained from the model’s

distribution function. We focus on the mean residual life function which provides the

expected remaining life given that the subject has survived (i.e., is event-free) up to a

particular time. This function is of interest in reliability, medical, and actuarial fields.

The mean residual life function not only has a simple and practical interpretation, it

characterizes the distribution through the Inversion Formula. Thus the mean residual

life function can be used in fitting a model to the data. We review the key properties

of the mean residual life function and investigate its form for some common distribu-

tions. We also study Bayesian nonparametric inference for mean residual life functions

obtained from a flexible mixture model for the corresponding survival distribution. In

particular, we develop Markov Chain Monte Carlo posterior simulation methods to fit a

nonparametric lognormal Dirichlet process mixture model to two experimental groups.

To illustrate the practical utility of the nonparametric mixture model, we compare with

an exponentiated Weibull model, a parametric survival distribution that allows various

shapes for the mean residual life function.
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Chapter 1

Introduction

Survival data are data that describe the time to a particular event. This event

is usually referred to as the failure of some machine or death of a person. However,

survival data can also represent the time until a cancer patient relapses or time until

another infection occurs in burn patients. The survival function of a positive random

variable X defines the probability of survival beyond time x.

S(x) = Pr(X > x) = 1− F (x)

where F (x) is the distribution function. The hazard rate function computes the proba-

bility of a failure in the next instant given survival up to time x,

h(x) = lim
∆x→0

Pr[x < X ≤ x+ ∆x|X > x]

∆x

when X is continuous
=

f(x)

S(x)

where f(x) is the probability density function. The mean residual life (mrl) function

computes the expected remaining survival time of a subject given survival up to time

x. Suppose that F (0) = 0 and µ ≡ E(X) =
∫∞

0 S(x)dx < ∞. Then the mrl function
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for continuous X is defined as:

m(x) = E(X − x|X > x) =

∫∞
x (t− x)f(t)dt

S(x)
=

∫∞
x S(t)dt

S(x)
(1.1)

and m(x) ≡ 0 whenever S(x) = 0. The mrl function is of particular interest because

of its easy interpretability and large area of application [9]. Moreover, it characterizes

the survival distribution via the Inversion Formula (1.2). Again for continuous X with

finite mean, the survival function is defined through the mrl function:

S(x) =
m(0)

m(x)
exp

[
−
∫ x

0

1

m(t)
dt

]
. (1.2)

One point of interest is study of the form for the mrl function of various dis-

tributions. Along with discussion on some key probabilistic properties and defining

characteristics of the mrl function, we also investigate its form under a number of com-

mon distributions. We find that the shape of the mrl function is often quite limited

to monotonically increasing (INC) or decreasing (DCR) functions, which may be ap-

propriate for some situations (e.g., the data example of Section 3.4), but not suitable

for other populations. For instance, biological lifetime data tend to support lower mrl

during infancy and elderly age while there is a higher mrl during the middle ages. The

shape of this mrl function is unimodal and commonly referred to as upside-down bath-

tub (UBT) shape. There have been many papers that have investigated the form of the

mrl function in relation to the hazard function. A well-known relationship for monoton-

ically increasing (decreasing) hazard functions is that the corresponding mrl function

will be monotonically decreasing (increasing); see Finkelstein [6] for a review. Gupta

and Akman [10] establish sufficient conditions for the mrl function to be decreasing
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(increasing) or UBT (BT) given that the hazard is BT (UBT). Xie et.al. [24] look at

the specific change points of mrl function and hazard function. These are just a few

examples of the literature on the shape of mrl functions.

Another point of interest lies in inference for the mrl function. There is some

literature on inference for the mrl function using nonparametric empirical estimators,

as well as parametric maximum likelihood estimates, for settings that may include re-

gression covariates and censoring (related references are given in Chapter 3). We are

interested in inference of the mrl function under a Bayesian framework. The literature in

this area is quite limited. In Chapter 3, we compare the mrl functions of two experimen-

tal groups under an exponentiated Weibull model [20], as well as using a nonparametric

lognormal Dirichlet Process (DP) mixture model. In addition to making inference on

mrl functions for the two groups, we also perform model comparison, which supports

the greater flexibility of the nonparametric mixture model. In Chapter 4 we summarize

our findings and discuss future areas of study under this framework.

Notation:

X: a non-negative continuous random variable representing survival time

F (x): the distribution function of X

f(x): the probability density function of X

S(x): denotes the survival function

h(x): denotes the hazard function

m(x): denotes the mean residual life (mrl) function

T ≡ inf{x : F (x) = 1} ≤ ∞

3



Chapter 2

Mean Residual Life Functions: Theory

and Properties

In this chapter we review some important properties and characteristics of the

mean residual life function and provide the form of the mrl function for several common

distributions. We begin with some elementary properties that are well-established in

the literature. These properties will either lead to the development of the Inversion

Formula (1.2) or become of more interest once the Inversion Formula is provided. We

close the first section by stating the Characterization Theorem (e.g., Hall and Wellner

[13]). The second section utilizes various forms of the definition of the mrl function

along with convenient transformations to study the various shapes of the mrl function

for a number of commonly used distributions.
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2.1 Probabilistic Properties

2.1.1 Elementary Identities

We start out by showing an elementary relationship between the survival func-

tion and the moments of the distribution. Klein and Moeschberger [16] state that for

a continuous random variable taking non-negative values and having finite mean, then

µ ≡ E(X) =
∫∞

0 xf(x)dx =
∫∞

0 S(x)dx.

E(X) =

∫ ∞
0

xf(x)dx

(
using integration by parts with:

u = x, du = dx, dv = f(x), v = −S(x)

)

= [−xS(x)]∞0 −
∫ ∞

0
−S(x)dx

= − lim
x→∞

xS(x)︸ ︷︷ ︸
goes to 0 (see discussion below)

+0S(0) +

∫ ∞
0

S(x)dx

=

∫ ∞
0

S(x)dx

where the limit as x goes to infinity of xS(x) is 0, since we assume a finite mean(∫∞
0 tf(t)dt <∞

)
and continuous distribution function. In general, the distribution

function need only be right continuous with finite mean for the limit to be 0. Our

argument follows: for a right continuous distribution, the survival function is defined

as S(x) =
∫∞
x f(t)dt ⇒ xS(x) = x

∫∞
x f(t)dt (note that the integral above can eas-

ily be broken into a sum of integrals for right continuous distributions containing

a jump in the density function). Since x and f(x) are both nonnegative, we have

0 ≤ x
∫∞
x f(t)dt ≤

∫∞
x tf(t)dt. Applying the limit to each expression, limx→∞ 0 ≤

limx→∞ x
∫∞
x f(t)dt ≤ lim

x→∞

∫ ∞
x

tf(t)dt︸ ︷︷ ︸
Goes to zero with finite mean

⇒ 0 ≤ limx→∞ x
∫∞
x f(t)dt ≤ 0, so by
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Squeeze Theorem, limx→∞ xS(x) = 0.

The second moment can also be written as a function of the survival function.

Assuming the existence of the 2nd moment, we can write,

E(X2) =

∫ ∞
0

x2f(x)dx =
[
−x2S(x)

]∞
0
−
∫ ∞

0
−2xS(x)dx

= − lim
x→∞

(x2S(x))︸ ︷︷ ︸
goes to 0 (see below)

+0S(0) + 2

∫ ∞
0

xS(x))dx

= 2

∫ ∞
0

xS(x)dx

Again, assuming the existence of the second moment
(∫∞

0 x2f(x)dx <∞
)
, for continu-

ous (at least right continuous) distribution function, we can write x2S(x) = x2
∫∞
x f(t)dt⇒

0 ≤ x2
∫∞
x f(t)dt ≤

∫∞
x t2f(t)dt. Applying the limit to each expression, limx→∞ 0 ≤

limx→∞ x
2
∫∞
x f(t)dt ≤ lim

x→∞

∫ ∞
x

t2f(t)dt︸ ︷︷ ︸
Goes to zero with finite 2nd moment

⇒ 0 ≤ limx→∞ x
2
∫∞
x f(t)dt ≤ 0,

again by Squeeze Theorem, limx→∞ x
2S(x) = 0.

In general, if the rth moment exists for a continuous random variable X we

have the following expression:

E(Xr) = r

∫ ∞
0

xr−1S(x)dx (2.1)

This expression is of interest for us, because once we establish the Inversion Formula

(1.2), we have a way of obtaining the moments (when they exist) from the mrl function.

Additionally, we have an expression for the variance in terms of the survival function:

V ar(X) = E(X2)− E2(X) = 2

∫ ∞
0

xS(x)dx−
[∫ ∞

0
S(x)dx

]2

We have already defined the mrl as the expectation of the remaining survival

time given survival up to time x. Here we derive the expression for the mrl function

6



through the survival function [23] as stated in (1.1),

m(x) = E(X − x|X > x) =

∫ ∞
x

(t− x)dP (X ≤ t|X > x)

=

∫ ∞
x

(t− x)d

(
F (t)− F (x)

1− F (x)

)
=

∫ ∞
x

(t− x)d

(
−S(t) + S(x)

S(x)

)
=

∫ ∞
x

(t− x)

(
d

[
−S(t)

S(x)

]
+ d[1]

)
=

∫ ∞
x

(t− x)

(
−S′(t)dt
S(x)

)
=

(t− x)S(t)|∞x +
∫∞
x S(t)dt

S(x)
=

limt→∞(t− x)S(t)− (x− x)S(x) +
∫∞
x S(t)dt

S(x)

=

∫∞
x S(t)dt

S(x)

where the first limit in the last step tends to 0 since we assume that the first moment

exists, and the second limit tends to 0 since F (∞) = 1. It is now easily seen that the

first moment is equivalent to the mrl function at x = 0.

m(0) =

∫∞
0 (t− 0)f(t)dt

S(0)
=

∫∞
0 tf(t)dt

1
= µ. (2.2)

2.1.2 Bounds for MRL Functions

Hall and Wellner [13] list a series of inequalities that provide bounds for the mrl

function. First, we have that m(x)+x
(i)
= E(X|X > x), which leads to (m(x)+x)S(x)

(ii)
=

E
(
X · 1(X>x)

) (iii)
= µ−E

(
X · 1(X≤x)

)
. It is also true that E

(
X · 1(X>x)

) (iv)

≤ TS(x),
(v)

≤

µ, and E
(
X · 1(X>x)

) (vi)

≤ (E(Xr))
1
r S(x)1− 1

r , for r > 1. Also, E
(
X · 1(X≤x)

) (vii)

≤

xF (x), and E
(
X · 1(X≤x)

) (viii)

≤ (E(Xr))
1
r F (x)1− 1

r , for r > 1. Proofs for these results

are provided in Appendix A.1.

Now we are ready to address the following bounds for the mrl function. If F

is non-degenerate with mrl, m(x), mean, µ, and νr ≡ E(Xr) ≤ ∞,

7



(a) m(x) ≤ (T − x)+ for all x, with equality iff F (x) = F (T−) or 1,

(note T− indicates that we are approaching T from the left)

(b) m(x) ≤ µ

S(x)
− x for all x with equality iff F (x) = 0

(c) m(x) <

(
νr
S(x)

) 1
r

− x for all x and any r > 1

(d) m(x) ≥ (µ− x)+

S(x)
for x < T with equality iff F (x) = 0

(e) m(x) >
µ− F (x)

(
νr
F (x)

) 1
r

S(x)
− x for x < T and any r > 1

(f) m(x) ≥ (µ− x)+ for all x, with equality iff F (x) = 0 or 1

If F is degenerate at µ, m(x) = (µ− x)+, for all x. Proofs are given in Appendix A.1.

2.1.3 Properties of MRL (Inversion Formula)

The properties stated below are also provided in Hall and Wellner [13], and are

essential for the development of the characterization theorem for mrl functions, which

is stated at the end of this section.

(a) m(x) is a nonnegative and right-continuous, and m(0) = µ > 0

(b) v(x) ≡ m(x) + x is non-decreasing

(c) m(x−) > 0 for x ∈ (0, T ); if T <∞, m(T−) = 0, and m is continuous at T(
m(t−) ≡ lim

x→t−
m(x)

)
(d) S(x) =

m(0)

m(x)
exp

[
−
∫ x

0

1

m(t)
dt

]
, for all x < T (Inversion Formula)

(e)

∫ x

0

1

m(t)
dt→∞ as x→ T

Property (d) is known as the Inversion Formula (1.2) and is proved below (see Appendix

A.2 for proofs of (a),(b),(c), and (e)).
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Proof of Inversion Formula: Define the function: k(x) ≡
∫∞
x S(t)dt = m(x)S(x).

We have k′(x) = f(x)m(x)−S(x)m′(x), with m′(x) =
S2(x)+f(x)

∫ x
0 S(t)dt

S2(x)
= 1 + f(x)m(x)

S(x) ,

and thus k′(x) = −S(x). Now consider,

∫ x

0

1

m(t)
dt = −

∫ x

0

−S(t)

S(t)

1

m(t)
dt = −

∫ x

0

k′(t)

k(t)
dt = − [log(k(x))− log(k(0))]

= −log
(
k(x)

k(0)

)
= −log

(
S(x)m(x)

S(0)m(0)

)
= −log

(
S(x)m(x)

m(0)

)
⇒ exp

(
−
∫ x

0

1

m(t)
dt

)
= exp

(
log

(
S(x)m(x)

m(0)

))
⇔ exp

(
−
∫ x

0

1

m(t)
dt

)
=

(
S(x)m(x)

m(0)

)
⇔ S(x) =

m(0)

m(x)
exp

(
−
∫ x

0

1

m(t)
dt

)

We conclude the review of properties for mrl functions with a key result that

provides necessary and sufficient conditions such that a function is the mrl function for

a survival distribution, and thus it characterizes mrl functions.

Characterization Theorem: Suppose a function m(x) which maps R+ → R+ satisfies

(a) m(x) is right-continuous and m(0) > 0; (b) v(x) ≡ m(x) + x is non-decreasing; (c)

if m(x−) = 0 for some x = x0, then m(x) = 0 for x ∈ [x0,∞); (d) if m(x−) > 0 for all

x, then
∫∞

0
1

m(t)dt = ∞. Let T ≡ inf{x : m(x−) = 0} ≤ ∞, and define S(x) by (2.3)

for x < T and S(x) ≡ 0 for x ≥ T . Then F (x) ≡ 1− S(x) is a distribution function on

R+ with F (0) = 0, TF = T , finite mean µF = m(0), and mrl function mF (x) = m(x).
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2.2 MRL Functions for Specific Distributions

2.2.1 Linear MRL

Oakes and Dasu [21] focus on linear mrl functions discussed in Hall and Wellner

[13]. The key result is that if the mrl function is linear, m(x) = Ax+B (A > −1, B > 0),

then by use of the Inversion Formula (1.2), the survival function has the form:

S(x) =

[
B

Ax+B

] 1
A

+1

+

(2.3)

We show the arrival to this survival form when A 6= 0 below:

S(x) =
(

B
Ax+B

)
exp

[
−
∫ x

0
1

At+Bdt
]

=
(

B
Ax+B

)
exp

[
− 1
A ln(At+B)

]x
0

=
(

B
Ax+B

) exp

[
ln(Ax+B)−

1
A

]
exp

[
ln(B)−

1
A

] =
(

B
Ax+B

)(
B

Ax+B

) 1
A

=
(

B
Ax+B

) 1
A

+1

+

where the positive part is necessary to satisfy the nonnegative property of the survival

function. For A > 0 the survival function is a Pareto distribution. The form of the

survival function of the Pareto distribution for random variable Z is,

S(z) =
(
β
z

)α
for β > 0 (scale), α > 0 (shape), and z ∈ [β,+∞]

If we consider the transformation Z = AX + B where B = β and 1
A + 1 = α, then we

have Z ∼ Pareto(α, β). To clarify, we know that β > 0 is satisfied from B = β with

B > 0. We also know that the shape parameter satisfies α > 1 from 1
A + 1 = α and

1
A > 0. Note that the first moment only exists for the Pareto distribution when α > 1

therefore the mean of survival function exists for linear mrl with A,B > 0. The support

is given by z ∈ [β,+∞] since z = Ax+B and Ax ≥ 0. Finally, since Z ≥ β > 0⇒ β
z > 0

10



the survival function is always positive, so no precautions need be made with taking

only the positive part of the function.
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Figure 2.1: (left) Linear mrl for X with A = 4 (slope) and B = 1 (intercept). (right)
Corresponding survival function of X.

For −1 < A < 0 the survival function is a rescaled beta distribution. The pdf of a

rescaled beta distribution is given by

f(z; a, b, p, q) = (z−a)p−1(b−z)q−1

B(p,q)(b−a)p+q+1

where a ≤ z ≤ b, p, q > 0, and B(., .) is the beta function defined as B(p, q) =∫ 1
0 t

p−1 (1− t)q−1 dt. Start with the form of the survival function from the linear mrl

to obtain the pdf. The pdf will reveal what type of reparameterization yields the form

of the rescaled beta. Start with S(x) =
[

B
Ax+B

] 1
A

+1

+
, note: that the positive part is

obtained when −Ax ≤ B → x ≤ −B/A. Then F (x) = 1−
[

B
Ax+B

] 1
A

+1
. Thus we have,

f(x) = −
(

1

A
+ 1

)[
B

Ax+B

] 1
A
[

AB

(Ay +B)2

]
= −

(
1
A + 1

)
AB

1
A

+1

(Ax+B)(
1
A

+1)+1

= −A (Ax+B)−( 1
A

+1)−1(
1
A + 1

)−1
B−( 1

A
+1)

, Let Z = −AX ⇒ dx

dz
= − 1

A

⇒ f(z) =
+A
A (B − z)−( 1

A
+1)−1(

1
A + 1

)−1
B−( 1

A
+1)

(with q=−( 1
A

+1))
=

(B − y)q−1(
−1
q

)
B−q

11



Now we can see that it is necessary for B = b, a = 0, p = 1. When p = 1 ⇒ B(p =

1, q) =
∫ 1

0 (1 − t)q−1dt = −
(

1
q

)
we have, f(z) = (z−0)1−1(b−z)q−1

B(1,q)(b−0)q+1−1 0 ≤ z ≤ b. Then the

cdf and survival functions are given by,

F (z) =

∫ z

0

(t− 0)1−1 (b− t)q−1

B(1, q) (b− 0)q+1−1 dt =

∫ z
0 (b− t)q−1 dt

B(1, q)bq

=
−1
q [(b− z)q − bq]

−
(

1
q

)
bq

=
[(b− z)q − bq]

bq
=

(
b− z
b

)q
− 1

⇒ S(z) =

(
b− z
b

)q
=

(
b

b− z

)−q
which is precisely the transformed survival function.
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Figure 2.2: (left) Linear mrl for X with A = −0.2 (slope) and B = 1 (intercept). (right)
Corresponding survival function of X.

For A = 0, the survival function is exponential: S(x) =
(
B
B

)
exp

[
−
∫ x

0
1
Bdt

]
= e−

1
B
x
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Figure 2.3: (left) Linear mrl for X with A = 0 (slope) and B = 1 (intercept). (right)
Corresponding survival function of X.
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Figures 2.1, 2.2, and 2.3 above show both the linear mrl function and the

resulting survival function using a value of the slope parameter (A) from each of the

three domains previously mentioned. The intercept was set as B = 1 for all three

forms to make the role of the slope parameter more obvious. Note that aside from

the exponential survival function, where no transformation is necessary, both the mrl

and survival functions are of the original survival times X rather than the transformed

survival times that are expected to follow well-defined distributions (Pareto and rescaled

beta). Turning now to the domains of the survival functions, recall from above that for

A ≤ 0 X can take on values from 0 to infinity, however, for −1 < A < 0 X goes from

0 to −B/A. In our example, the domain for the survival function when A = −0.2 and

B = 1 is [0, 5]. We can see that by increasing the magnitude of A the domain can get

very narrow.

2.2.2 The Form of the Mean Residual Life for Some Common Distri-

butions

In this section we summarize our investigation of the forms of mrl functions

for a number of common distributions. In the previous section, we discussed the distri-

butions having a linear mean residual life function namely the exponential, Pareto, and

rescaled beta. These distributions share the convenient feature that they yield a closed

form for the mrl function. On the other hand, the linearity of the mrl is too limiting to

be of much practical use. There are a number of distributions having more flexible mrl

functions, such as increasing and decreasing curvatures as well as BT or UBT shapes.

13



The difficulty for these distributions lies in obtaining a closed form of the mrl. Recall

from (1.1) that the mrl is defined as

m(x) =

∫∞
x x(t− x)f(t)dt

S(x)
=

∫∞
x S(t)dt

S(x)

Alternatively, the mrl can be written as,

m(x) =

∫∞
x x(t− x)f(t)dt

S(x)
=

∫∞
x tf(t)dt

S(x)− x
∫∞
x tf(t)dt

S(x) =

∫∞
x tf(t)dt

S(x)
− x (2.4)

m(x) =

∫∞
x S(t)dt

S(x)
=

∫∞
0 S(t)dt−

∫ x
0 S(t)

S(x)

(2.2)
=

µ−
∫ x

0 S(t)

S(x)
(2.5)

Govilt and Aggarwal [8] derive (2.4) by starting with
∫∞
x f(t)dt and applying

integration by parts and solving for
∫∞
x S(t)dt to obtain

∫∞
x S(t)dt =

∫∞
x tf(t)dt−xS(x).

Dividing both sides by S(x) results in the survival distribution form of the mrl function.

This derivation requires that xS(x) → 0 as x → ∞. As stated in Section 2.1.1, this

limit converges to 0 as long as the distribution function is right continuous and has

finite mean. The distributions that we discuss meet these requirements. The mrl can

also be obtained, perhaps more directly, from the first equality stated in Section 2.1.2

(i) by subtracting x from both sides.

The distributions discussed here have no known closed form for their associ-

ated mrl making them difficult to explore. However, through the use of (2.4) or (2.5)

and/or simple transformations of X, we are able to obtain forms of the mrl functions

comprised of well-known integrals. Although these forms are far from an ideal closed

form, they are easy to evaluate with most statistical programming software.
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Gamma Distribution

The survival function of the gamma distribution has no closed form, therefore

we will work with (2.4) to obtain the mrl. The pdf of the gamma distribution with

shape parameter α and scale parameter λ is given by

f(x) =
xα−1exp

[
−x
λ

]
λαΓ(α)

with Γ(α) =

∫ ∞
0

tα−1e−tdt

The numerator in (2.4) is simplified as follows:

∫ ∞
x

tf(t)dt =

∫ ∞
x

t

(
xα−1exp

[
−x
λ

]
λαΓ(α)

)
dt =

1

Γ(α)

∫ ∞
x

(
t

λ

)α
exp

[
− t
λ

]
dt

Under the integration by parts with the follows substitutions: u =
(
t
λ

)α
and dv =

exp
[
− t
λ

]
dt, then du = α

λ

(
t
λ

)α−1
dt and v = −λexp

[
− t
λ

]
. The numerator is equivalent

to,

1

Γ(α)

(
−
(

1

λ

)α−1

tαexp

[
− t
λ

]
|∞(∗)
x

)
+ λα

∫ ∞
x

1

Γ(α)
tα−1

(
1

λ

)α
exp

[
− t
λ

]
=

1

Γ(α)

(x
λ

)α−1
xαexp

[
−x
λ

]
+ λα

∫ ∞
x

fX(t)dt︸ ︷︷ ︸
SX(x)

Returning this expression to the numerator in (2.4), the mrl function is given by,

m(x) =
xαexp

[
−x
λ

]
λα−1Γ(α)SX(x)

+ λα− x (2.6)

where by repeated use of L’Hopital’s Rule (*) goes to 0.
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Figure 2.4: (Top) Gamma distribution with shape 0.5 and scale 2. (Middle) Gamma
distribution with shape 1 and scale 2. (Bottom) Gamma distribution with shape 3 and
scale 2.

In Figure 2.4, the survival function (left), hazard rate function (center), and

mrl function (right) for three different values of the shape parameter. When the shape

parameter is < 1 (we use 0.5, see top row), the hazard rate function is monotone

decreasing and the mrl function is monotone increasing. For shape parameter = 1

(middle row), the hazard and mrl functions are constant at the rate (1/scale) = 1/2

and scale = 2, respectively. For shape parameter > 1 (we use 3, see bottom row),

the hazard rate function in monotone decreasing and the mrl function is monotone
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increasing. The scale parameter does not play a role in the shape of the hazard or mrl

function, so was kept constant.

Gompertz Distribution

The Gompertz distribution with shape and scale parameters α, λ > 0 respectively has

survival function

S(x) = exp

[
λ

α
(1− eαx)

]
⇒
∫ ∞
x

S(t)dt =

∫ ∞
x

exp

[
λ

α

(
1− eαt

)]
dt = eλ/α

∫ ∞
x

exp

[
−λ
α
eαt
]
dt

If we let z(t) = z = λ
αe

αt, then t = 1
α ln

[
λ
αz
]
⇒ dt = 1

α

(
1
z

)
dz. Substituting back into

the survival function provides,

S(x) = eλ/α
(

1

α

)∫ ∞
z(x)

z−1e−zdz = eλ/α
(

1

α

)
Γinc(0, z(x))

where Γinc(a, x) =

∫ ∞
x

ta−1e−tdt where x, a ≥ 0

⇒ m(x) =
eλ/α

(
1
α

)
Γinc(0, z(x))

exp
[
λ
α (1− eαx)

] = ez(x)

(
1

α

)
Γinc(0, z(x)) (2.7)(

where z(x) =
λ

α
eαx
)

The Gompertz distribution has only monotone increasing hazard rate function

and decreasing mrl function. In Figure 2.5, the survival function (left), hazard rate

function (middle), and mrl function (right) are shown under a shape parameter value

of 3 and scale parameter value of 0.5.
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Figure 2.5: Gompertz distribution with shape parameter 3 and scale parameter 0.5

Log-logistic Distribution

The Survival Function for the log-logistic distribution with shape and scale parameters

α, λ > 0 respectively is given by,

S(x) =
[
1 +

(x
λ

)α]−1

The mean of the log-logistic distribution is only finite when the shape parameter is

greater than 1, thus the mrl is only defined when α > 1. The mrl for the log-logistic

distribution is easily obtained from by simplifying (1.1) as is done by Gupta, Akman,

and Lvin [11]. The numerator in (1.1) is defined as
∫∞
x S(t)dt =

∫∞
x

[
1 +

(
x
λ

)α]−1
. Let

z(t) = z =
( tλ)

α

1+( tλ)
α . Then t = λ

(
z

1−z

) 1
α

and dt = λ
α

(
z

1−z

) 1
α
−1 (

1
(1−z)2

)
dz. Applying

the transformation, the integral becomes,

=

∫ limt→∞ z(t)

z(x)

[
1 +

z

1− z

]−1(λ
α

)(
z

a− z

) 1
α
−1

(1− z)−2dz

=

(
λ

α

)∫ 1

z(x)
(1− z)(1− 1

α)−1z
1
α
−1dz

=

(
λ

α

)
Γ

(
1− 1

α

)
Γ

(
1

α

)∫ 1

z(x)

Γ
(
1− 1

α + 1
α

)
Γ
(
1− 1

α

)
Γ
(

1
α

)(1− z)(1− 1
α)−1z

1
α
−1dz︸ ︷︷ ︸

survival function of a beta
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m(x) =

(
λ
α

)
Γ
(
1− 1

α

)
Γ
(

1
α

)
SZ
(
z(x); shape = 1− 1

α , scale = 1
α

)
SX(x)

=

(
λ

α

)
Γ

(
1− 1

α

)
Γ

(
1

α

)
SZ

(
z(x); 1− 1

α
,

1

α

)(
1 +

(x
λ

)α)
(2.8)
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Figure 2.6: Loglogistic Distribution with shape parameter 8 and scale parameter 100.
(bottom) Loglogistic Distribution with shape parameter 0.8 and scale parameter 0.6

The loglogistic distribution provides an UBT shape for the hazard rate func-

tion with corresponding BT mrl function when the shape parameter is greater than 1,

see the top row in Figure 2.6. However, this is the only shape that the distribution offers

for the mrl. When the shape parameter is less than or equal to 1 (bottom of Figure

2.6), the hazard rate function is decreasing, but the mrl function is undefined.

Log-Normal Distribution

The log-normal distribution falls in with those distributions having no closed form for
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the survival function, so (2.4) will be used to obtain the mrl function. The pdf of a

lognormal is given by,

f(x) =
1

x
√

2πσ2
exp

[
−1

2

(
ln(x)− µ

σ

)2
]

The cdf is given by F (x) =
∫ x

0
1

t
√

2πσ2
exp

[
−1

2

(
ln(t)−µ

σ

)2
]
dt = Φ

(
ln(x)−µ

σ

)
, so the

survival function is S(x) = 1 − Φ
(
ln(x)−µ

σ

)
. Working from (2.5) the numerator is∫∞

x tf(t)dt = 1√
2π

∫∞
x

1
tσexp

[
−1

2

(
ln(t)−µ

σ

)2
]
dt. Let z(t) = z = ln(t)−µ

σ , then t =

exp [zσ + µ] and dt = σexp [zσ + µ] dz. The numerator becomes,

=
1√
2π

∫ ∞
z(x)

exp

[
−1

2
z2 + zσ + µ

]
dz

=
1√
2π
e

(
µ+σ2

2

) ∫ ∞
z(x)

exp

[
−1

2
(z − σ)2

]
dz

= e

(
µ+σ2

2

) [
1− Φ

(
ln(x)− (µ+ σ2)

σ

)]

m(x) =
e

(
µ+σ2

2

) [
1− Φ

(
ln(x)−(µ+σ2)

σ

)]
1− Φ

(
ln(x)−µ

σ

) − x (2.9)

Contrary to what we have seen thus far, the scale parameter determines the

shape of the hazard and mrl functions. In Figure 2.7, we provide the survival (left),

hazard (center), and mrl (left) functions under three different values of σ and constant

µ = 1, in the lognormal distribution. When σ < 1 (top), the hazard rate function is

increasing and the mrl function is decreasing. When σ = 1 (middle), the hazard rate

has an UBT shape and the corresponding mrl function has a BT shape. For σ > 1

(bottom), the hazard rate function is decreasing, and the mrl function is increasing.
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Figure 2.7: Log-normal distribution with location parameter, µ = 1, and scale parameter
σ = 1.

Truncated Normal Distribution

Once again the lack of a closed form for the survival function of the normal

distribution requires use of (2.4) to obtain the mrl function. We will extend the results

of Govilt and Aggarwal [8] for the standard normal distribution to the general normal

distribution with a lower truncation at 0 to fit the non-negative criteria of survival times.

Let X follow a truncated normal distribution with mean µ and variance σ2 and let Y

follow a normal distribution with the same mean µ and variance σ2. Then the cdf of Y

is given by,

FY(y) =
1√
σ22π

∫ y

0
exp

[
−1

2

(
t− µ
σ

)2
]
dt = Φ

(
y − µ
σ

)

The density and survival functions are then given by fY(y) = 1√
σ22π

exp
[
−1

2

(y−µ
σ

)2]
and SY(y) = 1− Φ

(y−µ
σ

)
, respectively. The density function of X can be expressed in

terms of the normal distribution as fX(x) = fY(x)
1−FY(0) = fY(x)

c where c = 1−FY(0). The

cdf of X can also be written in terms of the normal distribution: FX(x) =
∫ x

0 fX(t)dt =

1
c

∫ x
0 fY(t)dt = 1

cFY(x) − 1
c FY(0)︸ ︷︷ ︸

1−c

= 1 − 1
c (1 − FY(x))= 1 − 1

cSY(x). The survival
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function of X follows as SX(x) = 1
cSY(x). We can write the numerator in (2.5) as,

∫ ∞
x

tfX(t)dt =
1

c

∫ ∞
x

tfY(t)dt =

∫ ∞
x

t

c
√
σ22π

exp

[
−1

2

(
t− µ
σ

)2
]

Let z(t) = z = t−µ
σ , then t = zσ+µ and dt = σdz. Applying the above transformation,

the integral becomes,

=
σ

cσ
√

2π

∫ ∞
z(x)

(zσ + µ)e−
z2

2 dz =
σ

c
√

2π

∫ ∞
z(x)

ze−
z2

2 dz +
µ

c

1√
2π

∫ ∞
z(x)

e−
z2

2 dz︸ ︷︷ ︸
SY(z(x))

= − σ

c
√

2π
e−

z2

2 |∞z(x) +
µ

c
SY(z(x)) =

σ

c
√

2π
e
− 1

2

(
x−µ
σ

2
)

+
µ

c
SY(z(x))

mX(x) =

σ√
2π
e
− 1

2

(
x−µ
σ

2
)

+ µSY(z(x))

SY(x)
− x (2.10)

The shape of the hazard rate and mrl functions are especially limited under

the truncated normal distribution. The hazard rate function is increasing, and the mrl

is decreasing for all values of the parameters (Figure 2.8).
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Figure 2.8: Truncated normal distribution with mean, µ = 3, and variance, σ2 = 4.

Weibull Distribution

The Weibull distribution is closely related to the gamma distribution. Since the
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the mrl defines the distribution it makes sense that we see a relationship between the mrl

functions of the the two distributions. The survival function of the Weibull distribution

with shape parameter α > 0 and scale parameter λ > 0 is given by S(x) = exp
[
−
(
x
λ

)α]
.

Then the numerator in (1.1) becomes
∫∞
x S(t)dt =

∫∞
x exp

[
−
(
t
λ

)α]
. Let z(t) = z = tα,

then t = z1/α and dt = 1
αz

1
α
−1dz. Applying the transformation, the integral becomes,

=
1

α

∫ ∞
z(x)

z
1
α
−1e−

z
λα dz =

1

α
(λα)

1
α Γ

(
1

α

)∫ ∞
z(x)

z
1
α
−1e−

z
λα

(λα)
1
α Γ
(

1
α

)
where the last integral is exactly the survival function SZ(z(x)) with

Z ∼ Γ
(
shape = 1

α , scale = λα
)
. Then the mrl is given by,

m(x) =

(
λ
α

)
Γ
(

1
α

)
SZ(z(x))

SX(x)
(2.11)

In Figure 2.9, the survival (left), hazard rate (center), and mrl (right) functions

are shown for three different values of the shape parameter. Note the scale parameter

does not play a role in determining the shapes of the hazard rate and mrl functions.

When the shape parameter is less than 1 (top), the hazard rate function is decreasing,

and the mrl function is increasing. For shape parameter equal to 1 (middle), the hazard

rate and mrl functions are constant at rate (1/scale) and the scale parameter values,

respectively. For shape parameter greater than 1 (bottom), the hazard rate function in

increasing with decreasing corresponding mrl function.

Table 2.1, provides a summary of the possible shapes of the hazard rate and mrl

functions for the distributions discussed in this section. The table shows how restricted

these commonly used distribution are in modeling the mrl function. The gamma and
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Figure 2.9: (Top) Weibull distribution with shape 0.7 and scale 2. (Middle) Weibull
distribution with shape 1 and scale 2. (Bottom) Weibull distribution with shape 4 and
scale 2.

Weibull are more versatile they offer three potential shapes for the mrl function, but

none of the three shapes consider change points in the mrl function. The loglogistic

offers three shapes of the mrl function as well, one being a BT shape, but the UBT

shaped mrl function is the more appropriate shape in modeling natural age data. In

fact, none of the distribution in Table 2.1 offer an UBT shaped mrl function. Generally

speaking, the distributions are restrictive in modeling mrl functions.
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Distribution Hazard Rate Mean Residual Life

Gamma(α, λ)
shape parameter α > 0
scale parameter λ > 0

α < 1 DCR
α = 1 constant (1/λ)
α > 1 INC

α < 1 INC
α = 1 constant(λ)
α > 1 DCR

Gompertz(α, λ)
shape parameter α > 0
scale parameter λ > 0

∀α INC ∀α DCR

Loglogistic(α, λ)
shape parameter α > 0
scale parameter λ > 0

α ≤ 1 DCR
α > 1 UBT

α ≤ 1 undefined
α > 1 BT

Lognormal(µ, σ)
mean µ ∈ R
variance σ2 > 0

UBT BT

Truncated normal(µ, σ)
mean µ ∈ R
variance σ2 > 0

INC DCR

Weibull(α, λ)
shape parameter α > 0
scale parameter λ > 0

α < 1 DCR
α = 1 constant (1/λ)
α > 1 INC

α < 1 INC
α = 1 constant(λ)
α > 1 DCR

Table 2.1: Summary Table
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Chapter 3

Bayesian Inference for MRL Functions

3.1 Literature Review

Interest in estimating the mrl function has been around for many years in the

classical survival analysis literature. There has been much development in this area,

from the nonparametric empirical estimator for completely observed survival times to

semiparametric estimates under regression settings and censored survival times.

The most basic estimator, being the empirical estimate, was first studied in

Yang [25]. Yang defines the empirical estimate by m̂n(x) =
∫∞
x Sn(t)dt

Sn(x) δ[0,X(n)](x) where

Sn(x) is the empirical survival function and X(n) is the maximum observed survival

time. It is shown that under this fixed finite interval, the estimator is asymptotically

unbiased, is uniformly strong consistent, and as n goes to infinity it converges in distri-

bution to a Gaussian process. Hall and Wellner [12] extend Yang’s empirical estimator

by defining it for values on the entire real line. Furthermore, they provide nonparamet-
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ric confidence bands for the estimate via transformations of the limiting process of the

estimator into Brownian motion. Kochar et. al. [17] modify the empirical estimate for

monotonic mrl functions by taking m∗n(x) = δ[0,X(n)](x)infy≤xm̂n(y) for monotonically

decreasing mrl and m∗∗n (x) = δ[0,X(n)](x)supy≤xm̂n(y) for monotonically increasing mrl.

They also prove consistency of the estimator. Abdous and Berred [1] use a local linear

fitting technique to find a smooth estimate assuming only that the smoothing kernel is

symmetric. A nonparametric hypothesis testing procedure for comparing mrl functions

from two independent groups was introduced by Berger et. al. [2]. A practical benefit

of this procedure is that mrl estimates of the two groups were allowed to cross, a pattern

that is likely to arise in applications.

Classical estimation for the mrl function began to have a semiparametric re-

gression flavor when Oakes and Dasu [21] extended the class of distribution having linear

mrl functions [13], to a family having proportional mrl functions, m1(x) = ψm2(x) for

ψ > 0. Maguluri and Zhang [19] further extended the proportional mrl model to a

regression setting, m(x|z) = exp(ψz)m0(x), where z is a vector of covariates, ψ is of

vector of regression coefficients, and m0(x) is a baseline mrl function. They provide

estimators for the vector of covariate effects ψ. One estimator is based off of maximum

likelihood methods of the exponential regression model, while a second arises from the

proportional hazards version of the model. The two estimators are compared using sim-

ulations and they find the estimator under the exponential regression model performs

superior to the estimate arising from the proportional hazards model. Both estimates

are consistent and asymptotically normal. Chen and Cheng [3] also extend the propor-
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tional mrl model to include inference for the regression parameters with censored data.

The method is developed through counting process theory.

In contrast to the classical literature, there has been very little work on model-

ing and inference for mrl functions under the Bayesian framework. Lahiri and Park [18]

present nonparametric Bayes and empirical Bayes estimators under a Dirichlet process

[5] prior for the probability distribution. They show that the Bayes estimator becomes

a weighted average of the prior guess for the mrl function and the empirical mrl func-

tion of the data. Johnson [15] discusses a Bayesian method for estimation of the mrl

function under interval and right censored data, also using a Dirichlet process prior for

the corresponding survival function.

In this chapter, we develop Bayesian inference methods for mrl functions based

on both a parametric and a more general nonparametric mixture model for the survival

distribution (Sections 3.2 and 3.3, respectively). The two approaches are compared

using a data set from the literature (Section 3.4), which illustrates the flexibility of

the nonparametric model setting. Possible extensions to more general modeling for mrl

functions are discussed in Chapter 4.

3.2 Exponentiated Weibull Model

The exponentiated Weibull Model [20] has been considered as a flexible para-

metric model with regard to the shapes of its mrl function. Specifically, the mrl function

may take on a number of various forms, namely monotone increasing, monotone decreas-
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ing, constant, UBT, or BT. The survival function has a closed form hence so does the

hazard rate function; however, the mrl function still requires numerical methods to ob-

tain. The distribution, density, hazard, and mrl function for the exponentiated Weibull

model are given by the following expressions:

F (x;α, θ, σ) =
[
1− exp

(
−
(x
σ

)α)]θ
, x > 0, α, θ, σ > 0 (3.1)

f(x;α, θ, σ) =
αθ

σ

[
1− exp

(
−
(x
σ

)α)]θ−1
exp

(
−
(x
σ

)α)(x
σ

)α−1

h(x;α, θ, σ) =
αθ
[
1− exp

(
−
(
x
σ

)α)]θ−1
exp

(
−
(
x
σ

)α) (x
σ

)α−1

σ
[
1−

[
1− exp

(
−
(
x
σ

)α)]θ]
m(x;α, θ, σ) =

∫∞
x

[
1−

[
1− exp

(
−
(
t
σ

)α)]θ]
dt

1−
[
1− exp

(
−
(
x
σ

)α)]θ
where α and θ are shape parameters and σ is a scale parameter. Note that σ, being a

scale, will not play a role in determining the form of the hazard and mrl functions. Ta-

ble 3.1 provides the parameter sets that result in each distinct shape for the mrl function.

α θ αθ form of mrl function

1 1 1 exponential distribution → constant mrl
– 1 – weibull distribution → monotone (inc, dcr or constant) mrl
< 1 6= 1 < 1 increasing
> 1 6= 1 > 1 decreasing
> 1 < 1 < 1 UBT
< 1 > 1 > 1 BT

Table 3.1: Forms of MRL for Exponentiated Weibull Distribution

Mudholkar and Strivastava [20] provide a similar table as Table 3.1 for the hazard rate

function for specific domains of α and θ. Xie et. al. [24] look at the role of the product
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of the shape parameters on the form of the hazard rate. Gupta and Akman [10] prove

that if the hazard rate function is BT and h(0) > 1/m(0), then the mrl is UBT, while

h(0) ≤ 1/m(0) implies decreasing mrl function. Similarly if the hazard rate function is

UBT and h(0) > 1/m(0), then the mrl is BT, while h(0) ≥ 1/m(0) implies increasing

function. Combining the aforementioned results, we can improve the table in [20] to

specify the exact shape of the mrl function for particular values of α and θ in conjunc-

tion with the value of the product of the parameters.

We use the exponentiated Weibull distribution under a Bayesian framework

to model survival data with a parametric approach. Exponential priors for both shape

parameters as well as the scale parameter provide a natural choice given that the pa-

rameters take on values in R+, as well as a convenient option for prior specification.

Assuming prior independence we have

p(α, θ, σ) ∼ Exp(α; aα)Exp(θ; aθ)Exp(σ; aσ) (3.2)

where aα, aθ, and aσ are the means of the respective exponential distributions. Prior

specification can be obtained using three prior quantiles (Q1, Q2, Q3) that describe prior

guesses of the survival population percentiles (P1, P2, P3). First, we create a system of

equations (3.3) to solve for α, θ, and σ. Then, the resulting values may be used as the

prior means aα, aθ, and aσ, respectively.

Pj =

[
1− exp

(
−
(
Qj
σ

)α)]θ
for j = 1, 2, 3 (3.3)

The posterior conditional distributions are not conjugate, so we use a Metropolis-

Hastings algorithm for MCMC posterior simulation. Due to the strong correlation
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amongst the parameters, we use a trivariate normal distribution for the proposal dis-

tribution. For numerical stability, we used the proposal on the log-scale. The mean of

the proposal is given by the log of the current posterior sample of α, θ, and σ. The

covariance matrix is first specified as diag(1, 1, 1) ∗ c where c is a constant or vector

of constants that improve mixing. We run the model for 1000 iterations, and update

the covariance matrix with the covariance of the log of the 1000 posterior samples. We

repeat this process until the covariance matrix is virtually unchanged. We will call the

resulting covariance matrix H. Let xi for i = 1, ..., n be the observed survival times,

φ = (α, θ, σ)
′
, and B be the number of iterations of the MCMC. We obtain posterior

samples of α, θ, and σ by

Initialize φ(1) = (aα, aθ, aσ)
′

for b = 1, ..., B + 1

log(φ∗)
draw∼ MVN3

(
log
(
φ(b)

)
,H ∗ c′

)
η

draw∼ Unif(0, 1)

if η < min



likelihood︷ ︸︸ ︷(
n∏
i=1

f(xi;φ
∗)

)
×

prior︷ ︸︸ ︷
p(φ∗; aα, aθ, aσ)×α∗θ∗σ∗(∏n

i=1 f(xi;φ
(b))
)
× p(φ(b); aα, aθ, aσ)× α(b)θ(b)σ(b)

, 1


let φ(b+1) = φ∗

else φ(b+1) = φ(b)

Finally, burn-in and thinning may be applied to obtain uncorrelated posterior samples

of α, θ, and σ. Once we have the desired posterior samples, we can compute point

and interval estimates for the density, survival, and hazard functions by evaluating
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their expressions in (3.1) over a grid of values x0 for survival time. Regarding the mrl

function, we can compute it using the expression in (2.5), that is,

m(x0;α, θ, σ) =

∫∞
0 S(t|α, θ, σ)dt−

∫ x0

0 S(t|α, θ, σ)dt

S(x0|α, θ, σ)

This form of the mrl function was chosen to minimize numerical instability. Since we

are essentially truncating the survival function by evaluating over a grid, the numerical

computation is not as reliable when we integrate using the form of (1.1) at upper grid

values.

3.3 Nonparametric Lognormal Mixture Model

3.3.1 Model Formulation

When the data exhibits unusual distributional features such as multi-modality

or skewness, parametric models tend to fail to capture these important features. A way

to go about this issue is to use a mixture model that combines a number of distributions

that we will refer to as components of the model. The question then becomes how many

components should be used and how should they be combined together? These concerns

can be addressed by bringing in a nonparametric aspect to the model, in particular, to

the weights of each component and to the number of components.

We use a Dirichlet process (DP) prior for the mixing distribution resulting

in a DP nonparametric mixture model, f(x;G) =
∫
k(x;θ)dG(θ), for the density of

the survival distribution. Specifically, we take a lognormal distribution for the kernel,
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thus, k(x;θ = (µ, σ2)) = 1

x
√

2πσ2
exp

[
−1

2

(
ln(x)−µ

σ

)2
]
, and assign a DP (α,G0) prior to

G. The DP is a stochastic process with random sample paths that are distributions

[5]. Thus a realization from the DP provides a random cdf sample path. The G0

parameter is the baseline or centering distribution, while the α parameter is a precision

parameter; the larger the value of α the closer the DP sample path is to the centering

distribution. We use the stick-breaking (SB) constructive definition of the DP defined

by Sethuraman [22], which states that a sample G(·) from DP (α,G0) is almost surely

of the form
∑∞

l=1wlδθl(·) where δθl(·) is a point mass at θl. The θl, for all l ∈ {1, 2, ...},

are iid samples from the baseline distribution, G0, and the wl are the corresponding

weights constructed sampling iid latent variables vr ∼Beta(1, α), for all r ∈ {1, 2, ...},

then w1 = v1 and wl = vr
∏l−1
r=1(1− vr), for all l ∈ {2, 3, ...}.

We will use the truncated version of the SB constructive definition of the

DP, GN (·) =
∑N

l=1 plδθl(·), where θl
iid∼ G0 for l = 1, ..., N , and p1 = v1 and pl =

vr
∏l−1
r=1(1− vr), for l = 2, 3, ...N , where vr

iid∼ Beta(1, α) for r = 1, ..., N − 1. Thus the

model for the observed survival times xi, i = 1, ..., n, becomes

f(xi|G)
ind∼

∫
LN(xi;µ, σ

2)dG(µ, σ2) (3.4)

=
N∑
l=1

plLN(xi;µl, σ
2
l )

where pl for l = 1, ..., N are the weights obtained via the DP SB construction, de-

scribed above, corresponding to the component θl = (µl, σ
2
l ) and N is the total number

of components in the mixture model. Technically, since the number of components

is predetermined there is no nonparametric element to the number of components.
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However, N is generally chosen to overestimate the true number of components, so

that the number of components suggested by the data is captured by the model. In

fact, many of the components will just be assigned a probability that is virtually zero.

The number of components for the finite sum DP approximation can be found using

E
(∑N

l=1 pl

)
= 1−

(
α
α+1

)N
, in particular, solving for N in

(
α
α+1

)N
= ε for small ε > 0.

The lognormal kernel for the DP mixture is chosen to provide the appropri-

ate support on R+ and, at the same time, a useful connection with the more standard

normal DP mixture model. Consider the transformation Y = log(X) and note that,

Pr(X ≤ x;G) = Pr(X ≤ exp(y);G)

=
∫ exp(y)

0 f(x;G)dx =
∫ exp(y)

0

∑N
l=1 plLN(x;µl, σ

2
l )dx

=
∑N

l=1 pl
∫ exp(y)

0 LN(x;µl, σ
2
l )dx =

∑N
l=1 plΦ

(
log(exp(y))−µl

σl

)
=
∑N

l=1 plΦ
(
y−µl
σl

)
Therefore, modeling X with a lognormal kernel is essentially equivalent to modeling

Y with a normal kernel. Hence we can obtain inference for the lognormal mixture on

the original scale by fitting the following normal DP mixture model to the transformed

responses yi = log(xi) for i = 1, .., n:

yi|G
ind∼

∫
N(yi;µ, σ

2)dG(µ, σ2) =

N∑
l=1

plN(yi;µl, σ
2
l ) for i = 1 : n (3.5)

In our data example (Section 3.4) we use the following conditionally conjugate priors
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(µl, σ
2
l )|λ, τ2, ρ ∼ G0(µl, σ

2
l ;λ, τ

2, ρ) = N(µl;λ, τ
2)Γ−1(σ2

l ; a, ρ(scale)) (3.6)

λ ∼ N(λ; aλ, bλ)

τ2 ∼ Γ−1(τ2; aτ , bτ (scale))

ρ ∼ Γ(ρ; aρ, bρ(rate))

α ∼ Γ(α; aα, bα(rate)).

When it comes to prior specification often there is not much prior knowledge

on the behavior of the population of of interest, but typically the researcher will have

at least somewhat of an idea of the range of the population. We would want to set our

priors to have a prior predictive distribution that encompasses this range. One way to

do so is to imagine one dispersed normal distribution that is centered at the midrange

with 2 standard deviations either way representing the prior range. We can then divide

the range by 4 and square that value to get the prior variance of the data. Using

the formulation below, we can divide the prior variance amongst the three additive

components:

(
range(Y )

4

)2

= V ar(Y ) = V ar(E(Y |µ, σ2)) + E(V ar(Y |µ, σ2)) (3.7)

= V ar(µ) + E(σ2)

= V ar(E(µ|λ, τ2)) + E(V ar(µ|λ, τ2)) + E(E(σ2|a, ρ))

= V ar(λ) + E(τ2) + E(ρ/(a− 1))

= bλ +
bτ

aτ − 1
+

(
1

a− 1

)(
aρ
bρ

)
Using a shape parameter of 2 for bτ and a would provide infinite prior variance for

their respective inverse gamma distributions. The variance for a gamma distribution

with rate bρ and shape aρ is given by aρ/b
2
ρ thus a larger shape parameter relative to

the square of the rate would give a larger prior variance.
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Regarding the prior for α, we consider the relationship between the number of

distinct components and the value of α. In general, the number of distinct components

is large for large α and small for small α. If the data set is moderately large, E(#distinct

components|α) ≈ αlog
(
α+n
α

)
can be used to suggest an appropriate α value.

3.3.2 Posterior Inference

Posterior samples of the unknown parameters can easily be obtained using

the block Gibbs sampler for DP mixtures [14]. Observe that before we introduce θl =

(µl, σ
2
l ), the first two levels of the model are,

yi|ζi
ind∼ N(yi; ζi), i = 1, ..., n

ζi|p,θ
iid∼ GN , i = 1, ..., n

where p = (p1, ..., pN ) are the weights corresponding to the weights, θ = (θ1, ..., θN ).

By marginalizing over the ζi we obtain the finite mixture model in (3.5). Now we can

augment the model with configuration variables L = (L1, ..., Ln) such that Li = l iff

ζi = θl. Then the full hierarchical model is given by,

yi|µ,σ2, Li
ind∼ N(yi;µLi , σ

2
Li)

Li|p
iid∼

N∑
l=1

plδl(Li)

p|α ∼ f(p;α) (SB)

(µl, σ
2
l )|λ, τ2, ρ ∼ N(µl;λ, τ

2)Γ−1(σ2
l ; a, ρ(scale))

λ ∼ N(λ; aλ, bλ)

τ2 ∼ Γ−1(τ2; aτ , bτ (scale))

ρ ∼ Γ(ρ; aρ, bρ(rate))

α ∼ Γ(α; aα, bα(rate))
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where f(p|α) = αN−1pα−1
N (1−p1)−1(1− (p1 +p2))−1× ...× (1−

∑N−2
l=1 pl)

−1 is a special

case of the generalized Dirichlet distribution as is Connor and Mosimann [4]. Let n∗ be

the number of distinct components of L where {L∗j : j = 1, ..., n∗} are the distinct com-

ponents. Let Ψ represent the vector of the most recent iteration of all other parameters.

Let b = 1, ..., B be the number of iterations in the MCMC. Then the samples from the

joint posterior distribution are obtained by

for b = 1, ..., B + 1

• Posterior conditional distribution for θl for l = 1, ..., N :

If l IS NOT already a component: l /∈ {L∗(b)j : j = 1, ..., n∗(b)}

µ
(b+1)
l |data,Ψ draw∼ N(λ(b), τ2(b))

σ
2(b+1)
i |data,Ψ draw∼ Γ−1(a, ρ(b))

If l IS a component: l ∈ {L∗(b)j : j = 1, ..., n∗(b)}

µ
(b+1)
l |data,Ψ

∝ N(µl;λ, τ
2)

∏
{i:Li=l}

N(yi;µl, σ
2
l )


draw∼ N(mµl , s

2
µl

)

s2
µl

=
1

1
τ2(b) +

n
(b)
j

σ
2(b)
l

, n
(b)
j = {# : l = L

(b)
i , i = 1, ..., n}

mµl =

(∑
{i:L(b)

i =l} yi

σ
2(b)
l

+
λ(b)

τ2(b)

)
s2
µl

σ
2(b+1)
i |data,Ψ

∝ Γ−1(σ2
l ; a, ρ)

∏
{i:Li=l}

N(yi;µl, σ
2
l )


draw∼ Γ−1

n(b)
r

2
+ a,

1

2

∑
{i:L(b)

i =l}

(yi − µ(b+1)
l )2 + ρ(b)
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• Update for p:

p(b+1)|data,Ψ

(
∝ f(p|α)

N∏
l=1

pMl
l Ml = |{i : Li = l}| , l = 1, ..., N

)
draw∼ Generalized Dirichlet Distribution

for l = 1, ..., N draw latent variable:

V
∗(b+1)
l

ind∼ Beta(1 +M
(b)
l , α(b) +

N∑
r=l+1

M (b)
r )

⇒ p
(b+1)
1 = V

∗(b+1)
1

p
(b+1)
l = V

∗(b+1)
l

l−1∏
r=1

(1− V ∗(b+1)
r ) (l = 2, ..., N − 1)

p
(b+1)
N = 1−

n−1∑
l=1

p
(b+1)
l

• Update for Li for i = 1, .., n :

L
(b+1)
i |data,Ψ draw∼

N∑
l=1

p̃liδ(l)(·)

p̃li =
p

(b+1)
l N(yi;µ

(b+1)
l , σ

2(b+1)
l )∑N

l=1 p
(b+1)
l N(yi;µ

(b+1)
l , σ

2(b+1)
l )

, l = 1, ..., N

• The posterior conditional distribution for λ:

λ(b+1)|data,Ψ

(
∝ N(λ; aλ, bλ)

N∏
l=1

N(µl;λ, τ
2)

)
draw∼ N(mλ, s

2
λ)

mλ =

(
aλ
bλ

+

∑N
l=1 µ

(b+1)
l

τ2(b)

)
s2
λ, s

2
λ =

1
1
bλ

+ N
τ2(b)

• The posterior conditional distribution for τ2:

τ2(b+1)|data,Ψ

(
∝ Γ−1(τ2; aτ , bτ )

N∏
l=1

N(µl;λ, τ
2)

)

draw∼ Γ−1

(
N

2
+ aτ ,

1

2

N∑
l=1

(µ
(b+1)
l − λ(b+1))2 + bτ

)
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• The posterior conditional distribution for ρ:

ρ(b+1)|data,Ψ

(
∝ Γ(ρ; aρ, bρ)

N∏
l=1

Γ−1(σ2
l ; a, ρ)

)

draw∼ Γ

(
aρ + aN,

N∑
l=1

1

σ
2(b+1)
l

+ b(b+1)
ρ

)

• The posterior conditional distribution for α:

α(b+1)|data,Ψ (∝ Γ(α; aα, bα)f(p|α))

draw∼ Γ

(
N + aα − 1,−

N−1∑
s=1

log(1− V ∗(b+1)
s ) + bα

)

Once the posterior samples are obtained we can compute point and interval estimates

for the density function over a grid of values x0 (on the original scale) by,

f(x0|GN ) =
∫ ∫

LN(x0;µL0 , σ
2
L0

)
(∑N

l=1 plδl(L0)
)

×p(µ, σ2,p,L, λ, τ2, ρ, α|data)dL0dµdσ
2dpdLdλdτ2dρdα

and integrating over all possible values of a new L0

=
∫ (∑N

l=i plLN(x0;µl, σ
2
l )
)
p(µ, σ2,p,L, λ, τ2, ρ, α|data)dµdσ2dpdLdλdτ2dρdα

Moreover, the survival function at grid point x0 is given by,

S(x0|GN ) =∫ (∑N
l=i plΦ

(
log(x0)−µl

σl

))
p(µ, σ2,p,L, λ, τ2, ρ, α|data)dµdσ2dpdLdλdτ2dρdα

Notice that both the density and survival functions are approximated by a summation

of the mixture components. This is not a problem for obtaining the hazard rate function

at x0, which is still given directly from its definition h(x0|GN ) = f(x0|GN )
S(x0|GN ) . Obtaining

the mrl function must be done by numerical integration approximation for the integral
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over the survival distribution. The survival function is monotone decreasing so the

trapezoid technique is an appropriate technique that is also quite simple. Of course

point and interval estimates for each of the aforementioned functions are desirable, so

if we consider a grid of possible new values x0 = x0,1, ..., x0,K

for b = 2, ..., B + 1

for k = 1, ...,K

f(x0,k|GN )(b) =
N∑
l=i

plLN(x0,k;µ
(b)
l , σ

2(b)
l )

S(x0,k|GN )(b) =

N∑
l=i

plΦ

(
log(x0,k)− µ

(b)
l

σ
(b)
l

)

h(x0,k|GN )(b) =
f(x0,k|GN )(b)

S(x0,k|GN )(b)

for k = 1, ...,K − 1

m(x0,k|GN )(b) =
1
2

∑K−1
h=k

(
(x0,(h+1) − x0,h)(S(x0,(h+1)|GN )(b) + S(x0,(h)|GN )(b))

)
S(x

(b)
0,k|GN )

Just as in the exponentiated Weibull model we can save the 2.5% and 97.5% quantiles

along with the mean at each grid point for each function to obtain the desired point

and interval estimates.

3.4 Example

We use the data set considered in Berger et. al. [2] to illustrate posterior in-

ference under both the exponentiated Weibull model and the nonparametric DP lognor-

mal mixture model. The data set consists of survival times of rats in two experimental

groups. The first group (Ad libitum group) is comprised of 90 rats who were allowed

to eat freely as they desired. The second group (Restricted group) is comprised of 106
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rats that were placed on a restricted diet. Our interest lies in studying the form of the

mrl function under each condition, and moreover whether the mrl functions are signif-

icantly different from one another. We are also interested in how each model performs

in comparison to one another.

3.4.1 Results

Under the exponentiated Weibull model (3.1), we used the 10%, 50%, and

90% quantiles of the data with formula (3.3) to approximate appropriate priors for each

group. The restricted group had respective quantile values of (Q1 = 1.55, Q2 = 2.84,

Q3 = 3.34). If we set α = 2, θ = 5, and σ = 2, then the corresponding quantiles are given

as Q
′
1 = 1.99, Q

′
2 = 2.85, and Q

′
3 = 4.07 which we considered to be reasonably close

to the observed quantiles. Therefore, we set hyper-parameters in (3.2) to be aα = 2,

aθ = 5, and aσ = 2. Following the same methodology for the ad libitum group, we set

the hyper-parameters to aα = 4, aθ = 1, and aσ = 2. Point and interval estimates of

the density function are plotted in the top row of Figure 3.1.

Prior selection under the nonparametric lognormal DP mixture model (3.4)

was decided using the approximation for the variance of Y in (3.7). Note in (3.7) we

use the transformed random variable Y , but since the location and scale parameters of

Y and X are equivalent, the formulation remains the same under the original random

variable X. The range of the restricted group on the log scale is (4.65396,7.26892). This

gives us a spread of about 2.7 so the prior variance is about 0.46. We distribute the

variance evenly across the terms, and set the shape parameters a = aτ = 2 so that the
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Figure 3.1: Relative frequency histogram and densities of lifetime (in days) of the two
experimental groups (Ad libitum is left and Restricted is right) along with posterior
mean and 95% interval estimates for the density functions under the exponentiated
Weibull model (top) and LN DP mixture model (bottom).
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the corresponding prior have infinite variance. We set aρ = 20. This leaves us with

bλ = 0.15. bτ = 0.15 and bρ = 133.3. The prior mean for λ was set at the prior mean

of the group aλ = 6.8. For the ad libitum group, we followed the same approach. The

range on the log scale is (4.488636 ,6.870053) so the spread is about 2.5 leading to an

approximated prior variance of 0.39. Dividing the variance evenly amongst the terms

keeping a = aτ = 2 and decreasing aρ = 19, we get that bλ = 0.13, bτ = 0.13 and

bρ = 146.2. We set aλ once again to the mean of the data, 6.5. For both groups, we set

aα = 2 and bα = 4 which leads to a prior expected number of distinct components to

be about 3. Finally, we set the number of mixture components to N = 20. Posterior

estimates for the densities for the two groups under the DP mixture model are shown

in the bottom row of Figure 3.1.

In Figure 3.1 we note that the parametric model has some trouble capturing

some of the characteristics of the data. In the ad libitum group (upper left) a mi-

nor mode is suggested just below the 200th day. The unimodality of the exponentiated

Weibull distribution makes it impossible for the parametric model to capture this shape.

We note that the model tries to by reaching the tail of the estimated density out to

these values, but this is at a cost of underestimating the density where most of the data

exist, and overestimating the density where there is no data at all. There are many

regions where the data and the density of the data (green) do not even fall within the

interval estimates (black dashed). If we compare to how well the nonparametric model

(lower left) performs we see quite a bit of improvement. The extra structure at the lower

survival times is now being captured without the consequences of modeling poorly in

43



0 500 1000 1500

0
.0
0
0

0
.0
0
2

0
.0
0
4

0
.0
0
6

Predictive Densities

Survial Time (in days)

D
e
n
s
it
y

95% Posterior Interval
Posterior Mean Ad libitum
Posterior Mean Restricted

0 500 1000 1500
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Survival Distribution

Survival Time (in days)

 

95% Posterior Interval
Posterior Mean Ad libitum 
Posterior Mean Restricted

0 500 1000 1500

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

Hazard Function

Survival Time (in days)

 

95% Posterior Interval
Posterior Mean Ad libitum 
Posterior Mean Restricted

0 500 1000 1500

0
2
0
0

4
0
0

6
0
0

8
0
0

MRL Function

Survival Time (in days)

 

95% Posterior Interval
Posterior Mean Ad libitum 
Posterior Mean Restricted

Figure 3.2: Point and interval estimates of lifetime (in years) for the density (top left),
survival (top right), hazard rate (lower left), and ml (lower right) functions of the two
experimental groups under the LN DP mixture model.
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other regions of the data. The data density remains within the interval estimates over

the entire range of the data. We see similar results for the restricted group, which

has a large left skew with a slight mode in the far tail. The exponentiated Weibull

model (upper right) is able to model some of the skewness, but again runs into trouble

by smoothing over obvious peaks and valleys. Again there are a number of regions in

which the density of the data (red) is not contained in the interval estimates of the

model. The lognormal DP mixture model (lower right) is able to capture the peaks and

valleys that the exponentiated Weibull model could not. There is a slight discrepancy

from the point estimate (blue) and the density of the data (red) around 1250 days.

Nonetheless, the data density remains within the interval estimates of the model.

By comparing the densities under the two models, there is clear evidence

that the nonparametric lognormal DP mixture model is superior to the exponentiated

Weibull model. Therefore, we will use the results under the nonparametric lognormal

DP mixture model to compare the mrl functions under the two groups. In Figure 3.2, we

plot point and interval estimates of the posterior density functions (upper left), survival

functions (upper right), hazard functions (lower left), and mrl functions (lower right)

for both the ad libitum (green) and restricted (red) groups. Looking at the estimated

densities we can see that the majority of the ad libitum group have lower survival times

compared to the restricted group. The survival function estimates show that after about

700 days the survival curve of the restricted group is significantly higher than the ad

libitum survival curve. The hazard function shows that the probability of death in the

next instant is much higher for the ad libitum group past 500 days. The mrl functions
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are monotonically decreasing and do not cross. This leads us to conclude that the re-

maining life expectancy of a rat in the restricted group is higher than the remaining life

expectancy of a rat in the ad libitum group at any given time within the range of the

data.

3.4.2 Model Comparison

We use the minimum posterior predictive loss approach by Gelfand and Gosh

[7] to compare the exponentiated Weibull model to the nonparametric DP lognormal

mixture model. Under this criterion the goal is to minimize, within the collection

of models under consideration, the expectation of a specified loss function under the

posterior predictive distribution of replicate responses xrep given the observed data

xobs. Here, we use the square error loss function so that the general criterion is given

by

Dk(m) =
∑n

i=1 var(xi,rep|xobs,m) + k
k+1

∑n
i=1(E(xi,rep|xobs,m)− xi,obs)2

where xi,rep is a replicate of the ith observation, xi,obs, under the posterior predictive

distribution of the mth model. The first term is representative of a penalty measure

P (m), and the second term is a goodness-of-fit measure G(m). The value of k is specified

as the relative regret for departure from xi,rep. Note that as k tends to infinity, the

criterion becomes the sum of the penalty P (m) and goodness-of-fit G(m) measures.

For the exponentiated Weibull model (m1), obtaining E(xi,rep|xobs,m) and

var(xi,rep|xobs,m) is straightforward. The posterior predictive distribution is given by

p(xi,rep|xobs) =
∫
EW (xi,rep|α, θ, σ)p(α, θ, σ|data)dαdθdσ and can thus be sampled by
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taking the posterior samples (αb, θb, σb), for b = 1, ...., B, and drawing xi,rep,b from the

exponentiated Weibull distribution given each posterior parameter vector. Next, we

compute the mean and variance of the B replicates. Important to note is that the mean

and variance for one experimental group is going to be the same for each observation

in that group. We find the E(xi,rep|xobs,m1) and var(xi,rep|xobs,m1) for the ad libitum

group to be 671.2 and 17433.0, respectively, and for the the restricted group to be 949.5

and 74691.7, respectively. Thus the ad libitum group has G(m1)a =
∑90

i=1(671.2 −

xi,obs)
2 = 1615787 and P (m1)a = 90 ∗ (17433.0) = 1568967. The restricted group has

G(m1)r =
∑106

i=1(949.5− xi,obs)2 = 8542725 and P (m1)r = 106 ∗ (74691.7) = 7917319.

Obtaining the criterion under the nonparametric DP lognormal mixture model

(m2) takes a little more care. Recall that xi|G
ind∼
∫
LN(xi;µ, σ

2)dG(µ, σ2) for i =, ..., n.

In order to obtain replicates for each xi, we need to know the lth component from

which the observed xi came from according to the model. Thus we need to sample

xi,rep|xobs,m2 ∼
∫
LN(xi,rep|µli , σ2

li
)p(µli , σ

2
li
|data)dµlidσ

2
li

, for i = 1, ..., n, where the

subscript li is the ith value of the posterior sample of L and µli and σ2
li

are the lthi

posterior samples of µ and σ. Essentially a single xi,rep is sampled from the lognormal

distribution at each posterior iteration b = 1, ..., B integrating out all possible values of

µli and σ2
li

. After obtaining B xi,rep’s, we compute the mean (E(xi,rep|xobs,m2) ) and

variance (var(xi,rep|xobs,m2)) at each ith replicate. Now the penalty and goodness-of-

fit terms can be computed via the definition of the criterion. For the ad libitum group

we obtained G(m2)a = 393819.1 and P (m2)a = 1569166, and for the restricted group

G(m2)r = 1561413 and P (m2)r = 5595397.
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Figure 3.3: Values of the posterior predictive loss criterion for comparison between the
parametric exponentiated Weibull model (solid lines) and nonparametric lognormal DP
mixture model (dashed lines).

Figure 3.3 is a plot of the criterion values over a grid of k values. For both

groups the nonparametric lognormal DP mixture model performs significantly better

than the exponentiated Weibull model. The results of the formal model comparison

support our earlier argument that the nonparametric lognormal DP mixture model is

indeed a better model for these data compared to the exponentiated Weibull model.
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Chapter 4

Discussion and Conclusion

We began this document by presenting some basic properties and essential

characteristics of the mrl function, showing in particular that the survival distribution

is completely defined by the mrl function via the Inversion Formula (2.3). We next

presented an easy-to-work with (yet limiting) class of distributions that correspond to

a linear mrl function. We provided methods for obtaining the mrl function of several

common distributions allowing us to study the various shapes of the mrl function. We

find that the form of the mrl function for these distributions is again limited. Knowledge

of the form of the mrl function would need to be available in order to select a proper

model for mrl inference. The exponentiated Weibull model shows more promise in

inference for the mrl function. The mrl function corresponding to the exponentiated

Weibull distribution is able to take on several forms, namely constant, linear, increasing,

decreasing, BT, and UBT. Another benefit of the exponentiated Weibull distribution is

that it has a closed form for its survival function. This helps lower numerical error in
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estimating the mrl function. Also, the extension to censored data follows very naturally.

The likelihood under the exponentiated Weibull model (3.1) with observed survival

times, x1, ..., xr, and censored survival times, xr+1, ..., xn, would be given by

f(x|α, θ, σ) =
∏r
i=1 f(xr|α, θ, σ)×

∏n
j=r+1

(
F (bxj |α, θ, σ)− F (axj |α, θ, σ)

)
where axj is the minimum known survival time and bxj is the maximum known sur-

vival time. In the case of right censoring, F (bxj |α, θ, σ) = 1, and for left censoring,

F (axj |α, θ, σ) = 0.

We fit the exponentiated Weibull model to a data set with two experimen-

tal groups consisting of fully observed survival times. The model was able to capture

some of the skewness observed in the data, but the unimodality of its density proved

to be restrictive. We also fit a nonparametric lognormal DP mixture model to the two

groups. The posterior inference results captured the shape of the data much better

than the exponentiated Weibull model. The drawback in working with the nonpara-

metric lognormal DP mixture model (3.4) is that the survival function is not available

in closed form, rather it is approximated over a grid of survival times by a weighted sum

of the survival values of each component of the model at each grid point. Hence the mrl

function is also approximated by an operation involving summations. The extension

to censoring is also available. For a censored observation xi the contribution to the

likelihood would be given by

∑N
l=1 pl

(
Φ
(
log(bxi )−µl

σl

)
− Φ

(
log(axi )−µl

σl

))
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where axi is the minimum and bxi is the maximum known survival times. For right

censoring, Φ
(
log(bxi )−µl

σl

)
= 1, and for left censoring, Φ

(
log(axi )−µl

σl

)
= 0. Of course,

under this setting we no longer have conditional conjugacy for all of the parameters, so

more general MCMC methods will be needed.

A practically important future research direction will seek to address the ques-

tion of how to model the mrl function directly under a Bayesian framework. In applica-

tion, there is often more interest in the mrl function over the survival function, hence it

would be practically useful to have a prior for the mrl function directly. To the best of

our knowledge, there is no methodology that has been established for this approach of

inference for the mrl function. The support of the nonparametric prior would have to be

functions that satisfy the properties stated in the Characterization Theorem of the mrl

function. Under such a prior, inference for the entire distribution would be obtainable

by using the Inversion Formula.
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Appendix A

Proofs

A.1 Equalities and Bounds of MRL

Below we provide the proofs for the equalities and bounds, respectively, of the mrl func-

tion stated in Section 2.1.2.

(i) m(x) + x =
∫∞
x (t−x)f(t)dt

S(x) + x =
[∫∞
x tf(t)dt− x

∫∞
x f(t)dt+ xS(x)

]
/S(x)

=
[∫∞
x tf(t)dt− x

∫∞
x f(t)dt+ x

(
1−

∫ x
0 f(t)dt

)]
/S(x)

=
[∫∞
x tf(t)dt− x

∫∞
0 f(t)dt+ x

]
/S(x) =

[∫∞
x tf(t)dt− x+ x

]
/S(x)

=
[∫∞
x tf(t)dt

]
/S(x) = E(X|X > x).

(ii) From (i) we have (m(x) + x)S(x) = E(X|X > x)S(x) =
∫∞
x tf(t)dt

S(x) S(x) =
∫∞
x tf(t)dt =

E
(
X · 1(X>x)

)
.

(iii) E
(
X · 1(X>x)

)
=
∫∞
x tf(t)dt (for X > x, and = 0 o.w.) =

∫∞
0 tf(t)dt−

∫ x
0 tf(t)dt =

µ− E
(
X · 1(X≤x)

)
(iv) E

(
X · 1(X>x)

)
=
∫∞
x tf(t)dt (for X > x, and = 0 o.w.)

since t≤T
≤ T

∫∞
x f(t)dt =

TS(x).

(v) E
(
X · 1(X>x)

)
=
∫∞
x tf(t)dt (for X > x, and = 0 o.w.) ≤

∫∞
0 tf(t)dt = µ.
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(vi) For this proof we make use of Holder’s inequality: for r.v. X and Y , p, q > 1 and
1
p + 1

q = 1, E(XY ) ≤ [E(Xp)]
1
p [E(Y q)]

1
q . Using the following substitutions: p = r, q =

(1 − 1
r )−1, Y = 1(X>x) ⇒ E

(
X · 1(X>x)

)
≤ [E(Xr)]

1
r

[
E
(

(1(X>x))
(1− 1

r
)−1
)](1− 1

r
)
.

This leaves us to show that S(x)(1− 1
r

) = E
(

(1(X>x))
(1− 1

r
)−1
)(1− 1

r
)
. So, S(x)(1− 1

r
) =[∫∞

x f(t)dt
]1− 1

r =
[∫∞

0 1(X>x)f(t)dt
]1− 1

r =
[
E(1(X>x))

]1− 1
r =

[
E((1(X>x))

(1− 1
r

)−1
)
]1− 1

r
.

(vii) E
(
X · 1(X≤x)

)
=
∫ x

0 tf(t)dt
since t≤x
≤ x

∫ x
0 f(t)dt = xF (x).

(viii) Using the substitutions as in the proof for (vi), we need to show that: F (x)(1− 1
r

) =[
E
(

(1(X≤x))
(1− 1

r
)−1
)]1− 1

r
. So, F (x)1− 1

r =
[∫ x

0 f(t)dt
]1− 1

r =
[∫∞

0 1(X≤x)f(t)dt
]1− 1

r =[
E
(
1(X≤x)

)]1− 1
r =

[
E
(

(1(X≤x))
(1− 1

r
)−1
)]1− 1

r
.

Turning to the proofs for the bounds of the mrl function, we have the following deriva-

tions.

(a) m(x) ≤ (T − x)+ for all x, with equality iff F (x) = F (T−) or 1:

INEQUALITY: Case 1 (x < T ): m(x) ≤ (T − x)+ ⇔ m(x) + x ≤ T
(i)⇔

E
(
X · 1(X>x)

)
≤ T The last inequality is always true since P (x > T ) = 0. Case

2 (x ≥ T or x = T−) in the case where T is infinite: m(x) ≤ (T − x)+ ⇒ m(x) ≤ 0
since the mrl is defined on R+ ⇒ m(x) = 0. EQUALITY: Forward Direction
Let m(x) = (T − x)+ Case 1 (x < T ): then, m(x) = (T − x), but we have

m(x) =
∫ T
x (t− x)f(t)dt = [(t− x)F (t)]Tx −

∫ T
x F (t)dt = (T − x)F (T−)− (x− x)F (x)−∫ T

x F (t)dt = (T−x)−
∫ T
x F (t)dt 6= (T−x). Since

∫ T
x F (t)dt > 0 when x < T we do not

have equality when x < T . Case 2 (x ≥ T ) or x = T− in the case where T is infinite:

/m(x) ≡ m(T ) =
∫ T
T (t− T )f(t)dt = 0 = (T − T )+ ≡ (T − x)+ and F (x) = F (T ) = 1

the same argument holds for T−.. Hence, when we have quality F (x) = F (T−) or 1
Backward Direction Let F (x) = F (T−) or 1: ⇒ S(x) = 0⇒ m(x) = 0 = (T −T )+.
This completes the if and only if argument.

(b) m(x) ≤ µ
S(x) − x for all x with equality iff F (x) = 0:

INEQUALITY: m(x) ≤ µ
S(x) − x ⇔ (m(x) + x)S(x) ≤ µ

(ii)⇔ E
(
X · 1(X>x)

)
≤ µ ⇔∫∞

x tf(t)dt ≤
∫∞

0 tf(t)dt . The last inequality is always true since
∫ x

0 tf(t)dt ≥ 0.
EQUALITY: Forward Direction. Suppose m(x) = µ

S(x) , from the inequality we

have ⇔
∫∞
x tf(t)dt =

∫∞
0 tf(t)dt thus x ≡ 0 so that F (x) = 0. Backward Direction.
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Suppose F(x) = 0. Then this implies that x ≡ 0 so that
∫∞
x tf(t)dt =

∫∞
0 tf(t)dt

and thus m(x) = µ
S(x) − x.

(c) m(x) <
(

νr
S(x)

) 1
r − x for all y and any r > 1:

m(x) <
(

νr
S(x)

)1/r
−x⇔ [m(x) + x] <

(
νr
S(x)

)1/r
⇔ [m(x) + x]S(x) <

(
νr
S(x)

)1/r
S(x)

(ii)⇔

E
(
X1(X>x)

)
<
(

νr
S(x)

)1/r
S(x). From (vi) we have that E

(
X1(X>x)

)
≤
(

νr
S(x)

)1/r
S(x).

Equality for Holder’s Theorem is present when for all r, νr <∞, there exists constants

c1 and c2 not both zero such that c1X
r = c2

(
1(X>x)

)(1−1/r)−1

for all values of x and

any r > 1 for X ≤ x ⇒
(
1(X>x)

)(1−1/r)−1

= 0 ⇒ c1X
r = 0. Since F is nonnegative

and non degenerate E(Xr) > 0, then c1 = 0 and c2 can be any nonzero constant and

the equality holds. For X > x ⇒
(
1(X>x)

)(1−1/r)−1

= 1⇒ c1X
r = c2 but since c1 = 0,

then that leaves c2 = 0 and the equality does not hold for all x. Therefore we only have
a strict inequality for (c).

(d) m(x) ≥ (µ−x)+

S(x) for x < T with equality iff F (x) = 0:

Note that x < T so that S(x) > 0.
INEQUALITY: Case 1 (x > µ): ⇒ (µ − x)+ = 0 ⇒ m(x) ≥ 0 which is true
since the mrl function is nonnegative by definition. Case 2 (x ≤ µ): ⇒ (µ − x)+ =

µ − x,⇒ m(x) ≥ µ−x
S(x) ⇔ m(x)S(x) + x ≥ µ ⇔ S(x) (m(x) + x) − xS(x) + x ≥ µ

(iii)⇔
µ− E

(
X · 1(X≤x)

)
− xS(x) + x ≥ µ⇔ −E

(
X · 1(X≤x)

)
+ x(1− S(x)) ≥ 0⇔ xF (x) ≥

E
(
X · 1(X≤x)

)
which is true by (vii).

EQUALITY: Forward Direction Suppose m(x) = (µ−x)+

S(x) . Case 1 (x > µ):

⇒ (µ − x)+ = 0 ⇒ m(x) = 0, but m(x) is zero iff x ≥ T (or degenerate at
µ), but here x < T . Therefore m(x) 6= (µ − x)+/S(x) when x ≥ µ. Case 2

(x ≤ µ) ⇒ m(x) = µ−x
S(x) ⇔ m(x)S(x) + x = µ

from (d) INEQ. Case 2
⇐⇒ xF (x) =

E
(
X · 1(X≤x)

)
⇔ xF (x)

by partial fractions
= xF (x) −

∫ x
0 F (t)dt ⇔

∫ x
0 F (t)dt = 0.

Since F(x) is nonnegative this is only true when F (x) = 0. Backward Direction
Suppose F (x) = 0⇒ S(x) = 1⇒ m(x) =

∫∞
x (t−x)f(t)dt =

∫
x tf(t)dt−x

∫∞
x f(t)dt =

µ − xS(x) = µ − x. Thus, we have equality when F (x) = 0. Note that µ ≥ x since
m(x) ≥ 0.

(e) m(x) >
µ−F (x)

(
νr
F (x)

) 1
r

S(x) − x for x < T and any r > 1:

m(x) >
µ−F (x)

(
νr
F (x)

) 1
r

S(x) −x⇔ (m(x)+x)S(x) > µ−F (x)
(

νr
F (x)

)1/r (ii)⇔ µ−E
(
X · 1(X≤x)

)
>

µ−F (x)
(

νr
F (x)

)1/r (iii)⇔ E
(
X · 1(X≤x)

)
> F (x)

(
νr
F (x)

)1/r
. From (viii) we know that this

is true, to show that we only have a strict inequality here, we proceed as in (c) with
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showing that there does not exist two constants c1, c2 that are not both nonzero such

that c1X
r = c2

(
1(X≤x)

)(1−1/r)−1

for X > x ⇒
(
1(X≤x)

)(1−1/r)−1

= 0 ⇒ c1X
r = 0 ⇒

c1 = 0, c2 6= 0 for X ≤ x ⇒
(
1(X≤x)

)(1−1/r)−1

= 1 ⇒ c1X
r = c2 but c1 = 0 ⇒ c2 = 0.

Thus the equality for (e) does not hold.

(f) m(x) ≥ (µ− x)+ for all x, with equality iff F (x) = 0 or 1:
INEQUALITY: Case 1 (x > µ): ⇒ (µ−x)+ = 0⇒ m(x) ≥ 0 is true by definition of

mrl function. Case 2: (x ≤ µ)⇒ (µ−x)+ = µ−x from (d)⇒ m(x) ≥ (µ−x)/S(x)
S(x)≤1

≥
µ− x. Therefore, the inequality holds.
EQUALITY: Forward Direction Suppose m(x) = (µ − x)+. Case 1 (x > µ)
⇒ (µ−x) = 0⇒ m(x) = 0 which is only true for x ≥ T or T− ⇒ F (x) = 1 or F (T−).

Case 2 (x ≤ µ): ⇒ (µ− x)+ = µ− x⇒ m(x) = µ− x⇔ m(x) + x = µ
(iii)⇔ E(X|X >

x) = µ, which is true only when F (x) = 0. Backward Direction: Case 1: Sup-

pose F (x) = 0 ⇒ x < µ ⇒ m(x) = µ − x ⇔ m(x) + x = µ
(i)⇔ E(X|X > x) = µ

which is true for x such that F (x) = 0. Case 2: Suppose F (x) = F (T−) or
1 ⇒ µ < x ⇒ (µ − x)+ = 0 Also, since S(x) = 0 ⇒ m(T ) = 0. Therefore we have
equality.
DEGENERATE: EQUALITY: If F is degenerate at µ, m(x) = (µ− x)+. Suppose
that F is degenerate ⇒ X = µ⇒ (µ−x)+ = 0 Also, X = T ⇒ S(x) = 0⇒ m(x) = 0.
Therefore we have the equality.

A.2 properties of MRL

Below we provide the proofs for the properties of the mrl function stated in Section 2.1.3.

(a) m is a nonnegative and right-continuous, and m(0) = µ > 0:
NON-NEGATIVE: Since 0 ≤ F (x) ≤ 1⇒ 0 ≤ 1−S(x) ≤ 1⇒ 0 ≤ S(x) ≤ 1. There-
fore, S(x) is non-negative. Now consider when x ≥ T , then S(x) ≡ 0, so m(x) ≡ 0. For

x < T ⇒ S(x) > 0 thus
∫∞
x S(t)dt > 0. Hence m(x) =

∫∞
x S(t)dt

S(x) ≥ 0.

RIGHT-CONTINUITY: We know that F (x) is right-continuous (ie. limh→0+ F (x+
h) = F (x)). Now, limh→0+ S(x+h) = limh→0+ (1− F (x+ h)) = 1−limh→0+ F (x+h) =
1 − F (x) = S(x). Hence S(x) is right-continuous as well. If S(x) is right-continuous,

then its integral must also be right-continuous (i.e., the limit, limh→0+

[∫∞
x+h S(t)dt

]
=∫∞

x S(t)dt). Finally, limh→0+m(x+h) = limh→0+

[∫∞
x+h S(t)dt

S(x+h)

]
=
∫∞
x S(t)dt

S(x) = m(x), thus

m(x) is right-continuous.
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FIRST MOMENT STRICTLY POSITIVE: From equation (2.1) we have estab-

lished that µ = m(0). Further, m(0) =
∫∞
0 S(t)dt

S(0) =
∫∞

0 S(t)dt, which must be greater

than 0 because S(t) is nonnegative for all 0 ≤ t <∞ and S(t+ ε)− S(t− ε) > 0 for at
least one value of t and ε > 0 in the domain. Therefore, m(0) ≡ µ > 0.

(b) v(x) ≡ m(x) + x is non-decreasing:
Let h > 0. Case 1 (x+ h < T ): ⇒ v(x+ h)− v(x) = m(x+ h) + (x+ h)−m(x)− x =

m(x + h) − m(x) + h =
∫∞
x+h S(t)dt

S(x+h) −
∫∞
x S(t)dt

S(x) + h. Since S(x) is monotone decreas-

ing then S(x + h) ≤ S(x) so the former expression is ≥
∫∞
x+h S(t)dt

S(x) −
∫∞
x S(t)dt

S(x) + h =

−
∫ x+h
x S(t)dt

S(x) + h we need to show that this expression is nonnegative. Assume that it

is, ⇔ h ≥
∫ x+h
x S(t)dt

S(x) ⇔
∫ x+h
x S(t)dt ≤ hS(x) this is true since the survival function

is non-increasing. Hence, v(x + h) − v(x) ≥ 0 ⇒ v(x) is non-decreasing. Case 2

(x < T ≤ x + h): ⇒ v(x + h) − v(x)
from Case 1

=
∫∞
x+h S(t)dt

S(x+h) −
∫∞
x S(t)dt

S(x) + h, but the

first integral is 0 since x + h > T . Thus, the expression becomes −
∫∞
x S(t)dt

S(x) + h =

−
∫ T
x S(t)dt

S(x) + h. Again we need to show that this expression is nonnegative. Assum-

ing that it is ⇔
∫ x+h
x S(t)dt ≤ hS(t), which is true since the survival function in

non-increasing. Therefore, v(x + h) − v(x) ≥ 0 ⇒ v(x) is non-decreasing. Case 3
(T ≤ x < x + h): ⇒ v(x + h) − v(x) = m(x + h) + (x + h) − m(x) − x, but since
T ≤ x < x + h ⇒ m(x + h) = m(x) = 0. Thus, v(x + h) − v(x) = h > 0 ⇒ v(x) is
non-decreasing.

(c) m(x−) > 0 for x ∈ (0, T ); ifT <∞m(T−) = 0 and m is continuous at T:

Part 1: Let x ∈ (0, T ), thenm(x−) =
∫ T
x− S(t)dt

S(x−)
. Since S(x−) < S(T ) ≤ 1⇒

∫ T
x− S(t)dt

S(x−)
>∫ T

x− S(t)dt which is > 0. Therefore, m(x−) > 0.

Part 2: Let x < T <∞⇒ v(x)
from (b)
≤ v(T ) = m(T ) +T = T ⇒ v(x) = m(x) +x ≤

T ⇔ m(x) ≤ T − x ⇒ limx→T−m(x) ≤ limx→T−(T − x) = T − T− = 0 ⇒ m(T−) =
m(T ) = 0 proving that m(x) is continuous at T.

(e)
∫ x

0
1

m(t)dt→∞ as x→ T :

Using (e) limx→T
∫ x

0
−k′(t)
k(t) dt = − limx→T [log(k(x))− log(k(0))] = − limx→T log

[
k(x)
(k(0)

]
=

log
[
limx→T k(x)
limx→T k(0)

]
. Since the limit of the numerator can be found by, limx→Tk(x) =

limx→TS(x)limx→Tm(x) = 0, and the denominator is k(0) = µ which is strictly pos-
itive from (a), the limit inside the log function is 0 with convergence from the right.
⇒ limx→0+log(x) = −∞, hence limx→T

∫ x
0

1
m(t)dt = −(−∞) =∞.
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