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Introduction
The mean residual life function provides the expected remaining life
given that the subject has survived (i.e., is event-free) up to a partic-
ular time. The mean residual life function characterizes the survival
distribution, and thus it can be used in fitting a model to the data.

We review the key properties of the mean residual life function and
investigate its form for some common distributions. We next develop
Bayesian nonparametric inference for mean residual life functions
obtained from a flexible model for the corresponding survival dis-
tribution, using Dirichlet process mixtures of lognormal or Weibull
distributions.

We compare with an exponentiated Weibull model, a parametric sur-
vival distribution that allows various shapes for the mean residual
life function. The approach is illustrated with two data examples,
one involving comparison of lifetimes of experimental subjects un-
der different diets, and one on right censored survival times of liver
metastases patients.

Mean Residual Life Function
The Survival function S(x) defines the probability of survival beyond
time x:

S(x) = Pr(X > x) = 1− F (x)

with F(x) the distribution function. The Hazard function gives the
probability of failure in the next instant given survival up to time x:

h(x) = lim
∆x→0

Pr[x < X ≤ x+ ∆x|X > x]

∆x

(for continuous X)
=

f(x)

S(x)

where f(x) is the probability density function. The Mean Residual
Life (MRL) function computes the expected remaining survival time
of a subject given survival up to time x. The MRL function with finite
mean (µ) is defined as:

m(x) = E(X − x|X > x)
(for continuous X)

=

∫∞
x
S(t)dt

S(x)

For a continuous random variable X with finite mean (µ) the Survival
function is defined through the MRL (Inversion Formula):

S(x) =
m(0)

m(x)
exp

[
−
∫ x

0

1

m(t)
dt

]
When the Hazard function isdecreasing (DCR), the MRL function is
increasing (INC) and vice versa. For an Bathtub (BT) shape Hazard
function, if h(0) > 1/µ then the MRL function has a Upside Down
Bathtub (UBT) shape, and if h(0) ≤ 1/µ then the MRL function is
decreasing (DCR). An UBT MRL function is commonly seen in bio-
logical situations where the subject has a lower MRL during infancy
and elderly age and a higher MRL during the middle ages. Generally,
the MRL function does not have a closed form expression and must
be obtained numerically.

Common Survival Distributions
The distributions in the table below may be restrictive in the form
of the MRL function. These distributions would require knowl-
edge of the shape the MRL function for the data to ensure the
proper model is fit. Moreover, many of these distributions have
monotonic MRL functions which is not characteristic for most
practical situations.

Distribution Hazard Mean Residual Life
Gamma(α, λ)
shape parameter α > 0
scale parameter λ > 0

α < 1 DCR
α = 1 constant (1/λ)
α > 1 INC

α < 1 INC
α = 1 constant(λ)
α > 1 DCR

Gompertz(α, λ)
shape parameter α > 0
scale parameter λ > 0

∀α INC ∀α DCR

Loglogistic(α, λ)
shape parameter α > 0
scale parameter λ > 0

α ≤ 1 DCR
α > 1 UBT

α ≤ 1 undefined
α > 1 BT

Weibull(α, λ)
shape parameter α > 0
scale parameter λ > 0

α < 1 DCR
α = 1 constant (1/λ)
α > 1 INC

α < 1 INC
α = 1 constant(λ)
α > 1 DCR

Model
The Exponentiated Weibull Distribution has an MRL function that
can be INC, DCR, UBT, BT, or constant. For t, α, θ, σ > 0, the
probability density function is defined as:

αθ

σ

[
1− exp

(
−
(
t

σ

)α)]θ−1

exp

(
−
(
t

σ

)α)(
t

σ

)α−1

α and θ are shape parameters while σ is a scale parameter The
form of the MRL function depends only on the values of α and θ
The Dirichlet Process (DP) Mixture Model:

xi|G
ind∼

∫
K(xi;θ)dG(θ) =

L∑
l=1

plK(xi;θl) for i = 1 : n

G ∼ DP (α,Go)

such that G =
∑∞
l=1 wlδθl is truncated by GL =

∑L
l=1 plδθl , and

where pl are the weights, obtained, via DP Stick-Breaking (SB)
construction, corresponding to the component θl, and L is the to-
tal number of components specified in the model.
→The Lognormal (LN) Dirichlet Process Mixture Model is fit-

ted to the survival times of the rats under different diets. In this
model, the kernel distribution is the Lognormal distribution and
the mixing is performed on the location and scale parameters,
θ = (µ, σ2), respectively.
→The Weibull Dirichlet Process Mixture Model is fitted to the

survival times of the liver metastasis patients. Here the kernel is
the Weibull distribution and the mixing is performed on the shape
and scale parameters, θ = (γ, σ), respectively.
→ A mixture of Weibull distributions is preferred over a mixture

of Lognormal distributions in the presence of censoring due to the
closed form of the Weibull survival distribution.

Results
We fit an Exponentiated Weibull Model and LN DP Mixture Model to two data sets in
an experiment that studied the lifetimes of rats under different diets. The Restricted
diet group consisted of 106 rats while the Ad Libitum (free-eating) group consisted of
108 rats.
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Restricted (under Exponentiated Weibull Model)
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Ad libitum (LN DP Mixture Model)
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Restricted (LN DP Mixture Model)
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Figure 1

Figure 1 indicates that the nonparametric model does a much better job at capturing
the unique characteristics of the data sets. Using our posterior samples from the LN
DP Mixture Model we simulated point and interval estimates for the Densities, Sur-
vival, Hazard, and MRL functions for the two experimental groups (Figure 2). The
MRL function of the Restricted diet is significantly higher than the Ad libitum diet.
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Figure 2

We fit a Weibull DP Mixture Model to the survival times of 360 patients with liver metas-
tasis. There were 259 right censored times. Posterior point and interval estimates for
the Density, Survival, Hazard, and MRL functions are shown in Figure 3.
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Figure 3

The Hazard function in Figure 3 exhibits multi-model behavior. The MRL function
shows a sharp decline in the remaining life expectancy towards the beginning age, and
continues to decrease with points of inflection around the corresponding ages of the
modes in the Hazard function.

Future Work
→ Extensions to regression modeling with censored responses.
→ Models that develop priors directly for the MRL function.


