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ABSTRACT
Solid-state drives are becoming increasingly popular in en-
terprise storage systems, playing the role of large caches and
permanent storage. Although SSDs provide faster random
access than hard-drives, their performance under read/write
workloads is highly variable often exceeding that of hard-
drives (e.g., taking 100ms for a single read). Many sys-
tems with mixed workloads have low latency requirements,
or require predictable performance and guarantees. In such
cases, the performance variance of SSDs becomes a problem
for both predictability and raw performance.

In this paper, we propose a design based on redundancy,
which provides high performance and low latency for reads
under read/write workloads by physically separating reads
from writes. More specifically, reads achieve read-only per-
formance while writes perform at least as good as before.
We evaluate our design using micro-benchmarks and real
traces, illustrating the performance benefits of read/write
separation in solid-state drives.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.8
[Operating Systems]: Performance

General Terms
Design, Performance

Keywords
Storage virtualization, solid-state drives, QoS, performance

1. INTRODUCTION
Solid-state drives have become an important component of

many enterprise storage systems. They are commonly used
as large caches and permanent storage, often on top of hard-
drives, which operate as long-term storage. The main per-
formance advantage of SSDs over hard-drives is their signif-
icantly faster random access. One would expect SSDs to be
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the answer to predictability, throughput and latency guaran-
tees as well as performance isolation for consolidated storage
in cloud environments. Unfortunately, their performance is
heavily workload dependent. Depending on the drive and
the workload there can be frequent and prohibitively high
latencies up to 100ms for both writes and reads (due to
writes) making SSDs multiple times slower than hard-drives
in such cases. That type of interference has been noted in
previous work [4, 5, 9, 11] for various device models and
is well-known in the industry. Interference results in un-
predictable performance and creates challenges in dedicated
and especially in consolidated environments, where differ-
ent types of workloads are mixed and clients require high
throughput and low latency consistently, often in the form
of reservations.

Although there is a continuing spread of solid-state drives
in storage systems, research on providing high and stable
performance for SSDs is limited. In particular, most related
work focuses on performance characteristics [4, 5, 3], while
other work, including [1, 2, 6] is related to topics on the
design of drives, such as wear-leveling, parallelism and the
Flash Translation Layer (FTL). With regards to schedul-
ing, [11] provides fair-sharing while trying to improve the
drive efficiency. To mitigate performance variance, current
flash-based solutions for the enterprise are often aggressively
over provisioned, costing many times more than commodity
solid-state drives or otherwise offer lower write throughput.
Given the fast spread of SSDs, we believe that providing
stable performance and low latency efficiently is important
for many systems.

In this paper, we propose and evaluate a method for achiev-
ing read-only throughput and latency for read requests un-
der read/write workloads while providing write performance
that is at least as good as before. More specifically, through
a form of redundancy we physically separate reads from
writes by presenting a subset of drives with read-only work-
loads and the rest of the drives with write-only workloads.
After a certain amount of time the two sets switch roles with
the write drives syncing up while also receiving new writes.

2. OVERVIEW
The contribution of this paper is a design based on redun-

dancy that provides read-only performance for reads under
arbitrary read/write workloads. In other words, we provide
stable and high throughput at a high granularity, and min-
imal latency for reads while performing at least as good for
writes as before. We present our results in three parts. In
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Figure 1: Read-only performance has virtually no
variance.

Section 3, we study the performance of two SSD models. We
observe their performance can become significantly unstable
and that it depends on past workloads. As we are lowering
the measurement granularity the worst-case throughput in-
creases and stabilizes, which although expected, it is not
obvious after which point the performance should become
stable. Based on the above, in Section 4 we show how to
provide read/write separation and evaluate our method un-
der micro-benchmarks and real workload traces.

2.1 System Notes
For our experiments we perform direct I/O to bypass the

OS cache and use Kernel AIO to asynchronously dispatch
requests to the raw device. To make our results easier to
interpret, we do not use a filesystem. Limited experiments
on top of ext3 and ext4 suggest our method would work
in those cases. Moreover, our experiments were performed
with both our queue and NCQ (Native Command Queueing)
depth set to 31. Other queue depths had similar effects to
what is presented in [5], that is throughput increased with
the queue size. Finally, the SATA connector was of 3.0Gb/s
and used the following SSD models:

Model Type Capacity Cache Year
A Intel X-25E SLC 65GB 16MB 2008
B Intel 510 MLC 250GB 128MB 2011

We chose the above models to develop a method, which
unlike heuristics (Section 3.2), works under different types
of drives, including commodity drives. Recent, data-center
oriented models have placed a greater emphasis on perfor-
mance stability. For the drives we are aware of, the stability
either comes at a cost that is multiple times that of com-
modity drives, or is achieved by lowering the random write
throughput significantly compared to previous models.

3. PERFORMANCE AND STABILITY
Solid-state drives have orders-of-magnitude faster random

access than hard-drives. On the other hand, SSDs are state-
ful and their performance depends on past workloads. The
interference of writes on reads has been noted in prior work
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Figure 2: When the drive has limited free space,
random writes trigger the garbage collector result-
ing in low and unstable performance.

[4, 5, 9, 11] for other drive models, and is widely known
in the industry. We first verify the behavior of reads and
writes on drive B. By running a simple read workload with
requests of 256KB over the first 200GB of drive B, we see
from Figure 1 that the throughput is virtually variance-free.
We noticed a similar behavior for smaller request sizes and
for drive A. On the other hand, performing the exact same
experiment but with random writes gives stable throughput
up to a point, after which the performance degrades and
becomes unstable (Figure 2).

To illustrate the interference of writes on reads on the
same drive, we run the following two experiments. In the
first experiment, we have three streams performing reads
and one performing random writes covering a logical range
of only 100MB. The drive has over 200GB of free space.
Figure 3(a) shows the CDF of the throughput in IOPS (in-
put/output per second) achieved by each stream over time.
We note that the performance behavior is relatively stable,
which is expected, since more than 80% of the device blocks
are clean, reducing write amplification. The second experi-
ment consists of similar streams, but now the drive is filled
and we perform writes uniformly at random over the first
200GB. Figure 3(b) illustrates that under such conditions
the drive performance is unstable. We attribute this to the
garbage collector not being able to keep up, which turns
background operations into blocking ones.

Different SSD models can exhibit different throughput
variance for the same workload. Performing random writes
over the first 50GB of drive A, which has a capacity of 65GB,
gives a throughput variance close to that of reads (figure
skipped). Still, the average performance eventually degrades
to that of B and then, the total blocking time corresponds
to more than 50% of the device time (Figure 4).

3.1 Performance Granularity
For certain workloads and depending on the drive, to

maintain a throughput above zero the granularity has to be
relatively low, i.e., multiple seconds. A simple example of
such workload on drive A consists of 4KB sequential writes.
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(a) Performing writes over only 100MB of a mostly empty
SSD leads to stable write performance and the effect of
writes on reads is relatively small.
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(b) When the drive is filled and we perform writes over
200GB, the read throughput becomes unpredictable due
to write-induced blocking events.

Figure 3: The performance variance varies depend-
ing on the writing range and the drive’s free space.

We noted that when the sequential writes enter a randomly
written area, the throughput oscillates between 0 and 40,000
writes/sec. We believe this variance is indeed due to the SSD
itself rather than a system effect since disabling the drive
write cache leads to stable but lower throughput of 2,500
writes/sec. In Figure 5, we see that the granularity has to
be lowered to about 5 seconds before the variance becomes
small. Note that the increase of the worst-case throughput is
fast. Similarly, the worst-case throughput achieved by drive
B when executing large sequential writes increases in the
window size. Based on the above, it is safe to assume that
the average write throughput of an SSD is stable enough over
large time windows (e.g., 10 seconds). This observation will
become important in Section 4.

To further emphasize the differences between SSD models
with respect to throughput stability, we note that running
4KB sequential writes on drive B gives a stable performance
(not shown). This implies that requests on drive B are not
equally affected by the access patterns of previous writes,
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Figure 4: In each second, at least 10×60ms are spent
with the drive being blocked, leading to high laten-
cies for all queued requests.

possibly due to its large cache. On the other hand, we saw
that drive A provides a more stable performance for large
random writes than B. The above imply that for mixtures
of small sequential and large random writes, neither drive
provides stable throughput at a granularity of a second. We
conclude that stable performance at a high granularity de-
pends on both the workload and the drive. Finally, the SSD
write cache contributes to the throughput variance and al-
though in our experiments we keep it enabled by default,
disabling it improves stability but often at the cost of lower
throughput, especially for small writes.

3.2 Heuristic Improvements
By studying drive models A and B, we found the be-

havior of A, which has a small cache, to be more easily af-
fected by the workload type. First, writing sequentially over
blocks that were previously written with a random pattern
has a low and unstable behavior, while writing sequentially
over sequentially written blocks has a high and stable per-
formance. Although such patterns may appear under cer-
tain workloads and could be a filesystem optimization for
certain drives, we cannot assume that in general. Moreover,
switching from random to sequential writes on drive A, adds
significant variance and lowers its performance.

To reduce that variance we tried to disaggregate sequen-
tial from random writes (e.g., in 10-second batches). Doing
so doubled the throughput and reduced the variance signif-
icantly (to 10% of the average). On the other hand, we
should emphasize that the above heuristic does not improve
the read variance of drive B unless the random writes hap-
pen over a small range. This strengthens the position of not
relying on heuristics due to differences between SSD models.
In contrast to the above, in the next section, we present a
generic method for achieving high and stable read perfor-
mance under mixed workloads that is virtually independent
of drive characteristics and past workloads.

4. HIGH AND STABLE PERFORMANCE
In the previous section, we observed that the granular-

ity at which SSDs achieve high performance under mixed
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Figure 5: The worst-case throughput gets closer to
the average as we increase the window over which
we average. To reach 20,000 writes/sec we need win-
dows of at least four seconds.

(read/write) workloads is low, i.e., multiple seconds. That
leads to high read latencies, which are prohibitive for many
applications, as well as low throughput at a high granularity
(Figure 5). We propose a generic design based on redun-
dancy that when applied on SSDs provides predictable per-
formance and low latency for reads, by physically isolating
them from writes. We expect this design to be significantly
less prone to differences between drives than heuristics, and
demonstrate its benefits under two models.

In what follows, we first present a minimal version of our
design, where we have two drives and perform replication.
In Section 4.3, we generalize that to support erasure codes.

4.1 Basic Design
Solid-state drives have fast random access and can exhibit

high performance. However, as shown in Section 3, depend-
ing on the current and past workloads, performance can de-
grade quickly. For example, performing random writes over
a wide logical range of a drive can lead to high latencies
for all queued requests due to write-induced blocking events
(Figure 2). Such events can last up to 100ms and account for
a significant proportion of the device’s time, e.g., 60% (Fig-
ure 4). Therefore, when mixing read and write workloads,
reads also block considerably, which can be prohibitive.

We want a solution that provides read-only performance
for reads under mixed workloads. SSD models differ from
each other and a heuristic solution working on one model
may not work well on another. We are interested in an ap-
proach that works across models. We propose a new design
based on redundancy that achieves those goals by physi-
cally isolating reads from writes. By doing so, we nearly
eliminate the latency that reads have to pay due to writes,
which is crucial for many low-latency applications. More-
over, we have the opportunity to further optimize reads and
writes separately. Note that using a single drive and dis-
patching reads and writes in small time-based batches and
giving priority to reads as in [11], may improve the perfor-
mance under certain workloads and SSD models. However,
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Writes from 

previous period

WritesReads

Cache

SSD 2

Write mode

Writes of 

current period

Figure 6: At any given time each of the two drives is
either performing reads or writes. While one drive
is reading the other drive is performing the writes
of the previous time window.

it cannot eliminate the frequent blocking occurring due to
garbage collection under a generic workload.

The basic design, illustrated in Figure 6, works as follows:
given two drives D1 and D2, we separate reads from writes
by sending reads to D1 and writes to D2. After a variable
amount of time T ≥ Tmin, the drives switch roles with D1

performing writes and D2 reads. When the switch takes
place, D1 performs all the writes D2 completed that D1

has not, so that the drives are in sync. We call those two
consecutive time windows a period. If D1 completes syncing
and the window is not yet over (t < Tmin), D1 continues
with new writes until t ≥ Tmin. In order to achieve the
above, we place a cache on top of the drives. While the
writing drive Dw performs the old writes all new writes are
written to the cache. In terms of the write performance, by
default, the user perceives write performance as perfectly
stable and half that of a drive dedicated to writes. In what
follows we present certain properties of the above design
and then a generalization supporting erasure codes and an
arbitrary number of drives.

4.2 Properties and Challenges

4.2.1 Data consistency & fault-tolerance
By the above design, reads always have access to the latest

data, possibly through the cache. This is because the union
of the cache with any of the two drives always contains ex-
actly the same (and latest) data. By the same argument, if
any of the two drives fail at any point in time, there is no
data loss and we continue having access to the latest data. In
that case, the performance will be degraded until the failed
drive is replaced and the data synced.

4.2.2 Cache size
Assuming we switch drive modes every T seconds and

the write throughput of each drive is w MB/s, the cache
size has to be at least 2T × w. This is because a total of
T×w new writes are accepted while performing the previous
T × w writes to each drive. We may lower that value to an
average of 3/2 × T × w by removing from memory a write
that is performed to both drives. As an example, if we
switch every 10 seconds and the write throughput per drive
is 200MB/s, then we need a cache of T × 2w = 4000MBs.



The above requires that the drives have the same throughput
on average (over T seconds), which is reasonable to assume
if T is not small (Figure 5). Moreover, we assume that the
rate at which writes are accepted is w/2, i.e., half the write
throughput of a drive, which is achieved through throttling.
That condition is necessary to hold over large periods since
replication implies that the write throughput, as perceived
by the client, has to be half the drive throughput. Of course,
extra cache may be added to handle bursts. Finally, the
cache factor can become w× T by sacrificing up to half the
read throughput if the syncing drive retrieves the required
data from Dr instead of the cache. However, that would also
sacrifice fault-tolerance and given the low cost of memory it
may be an inferior choice.

4.2.3 Power failure
In an event of a power failure if the memory is volatile,

then our design as described so far will result in a data
loss of T × w MBs, which is less than 2GB in the above
example. Shorter switching periods result in smaller data
losses. However, we can avoid data loss by turning incoming
writes into synchronous ones. Then the incoming T × w/2
MBs of data is written to Dw and the cache. After the power
is restored, we know which drive has the latest data, as long
as we store the mode each drive is in every T seconds (e.g.,
in a file). In that case, the cache amount required reduces
to an average of T × w/2. A disadvantage is that the write
performance may be less stable than sending writes to the
memory and only eventually committing to drive. Given
the advantages of the original design, a small data loss may
be tolerable by certain applications, especially in systems
where recent data reside on multiple nodes. However, other
applications may not tolerate a potential data loss.

Another approach to solve the power-failure problem while
maintaining close to perfect write stability without assuming
a battery-backed memory, is to perform writes to a perma-
nent journal. Depending on how our design is used that
could happen in different ways. First, in a distributed stor-
age system each node often has a separate journal drive,
which would be used by default. Second, on a local setup,
a separate drive would have to be used. Since most nodes
have a hard-drive, it could be used as a journal drive as
the sequential performance of a hard-drive is comparable to
that of an SSD, i.e., 100MB - which is the rate at which we
accept writes at a stable state. Another approach, which is
less flexible is to construct an SSD that would include what
we logically think of as two, and in addition to that a small
(e.g., 10GB) circular flash buffer to play the role of a jour-
nal. Finally, since no write is removed from the memory
until it is performed on both drives, if our process fails but
the system does not reboot, when the process restarts we
may flush all writes to both drives.

4.2.4 Capacity and cost
Doubling the capacity required to store the same amount

of data appears as doubling the storage cost. However, there
are reasons why this is not entirely true. First, cheaper SSDs
may be used in our design because we are taking away re-
sponsibility from the SSD controller by not mixing reads and
writes. In other words, any reasonable SSD has high and sta-
ble read-only performance, and stable average write perfor-
mance over large time intervals. Second, applications requir-
ing high throughput (at low granularities) and low latency
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Figure 7: Each object is obfuscated and its chunks
are spread across all drives. Reading drives store
their chunk in memory until they become writers.

lead to over-provisioning due to the unstable performance of
mixed workloads. Third, providing a drive with a write-only
drive for multiple seconds instead of interleaving reads and
writes is expected to improve its lifetime. Finally, most dis-
tributed storage systems already employ redundancy so the
hardware is available for fault-tolerance and only the soft-
ware has to be adjusted to apply this design. In the next
section, we reduce the storage space penalty through erasure
codes while providing read/write separation.

4.3 Design Generalization
We now describe the generalization of the previous de-

sign to support an arbitrary number of identical SSDs and
reader-to-writer drive ratios through erasure coding.

Assume a system with N drives connected over the net-
work to a single controller. We want to build a fault-tolerant
storage system by using N identical solid-state drives. We
will model redundancy as follows. Each object O stored in
our system will occupy q|O| space, for some q > 1. Having
fixed q, the best we can hope in terms of fault-tolerance and
load-balancing is that the q|O| bits used to represent O are
distributed (evenly) among the N drives in such a way that
O can be reconstituted from any set of N/q drives. A nat-
ural way to achieve load-balancing within each group is the
following: To handle a write request for an object O, each of
the N drives receives a write request of size |O| × q/N . To
handle a read request for an object O, each of N/q randomly
selected drives receives a read request of size |O| × q/N .

In the system above, writes are load-balanced determinis-
tically since each write request places exactly the same load
on each drive. Reads, on the other hand, are load-balanced
via randomization. Each drive receives a stream of read
and write requests whose interleaving mirrors the interleav-
ing of read/write requests coming from the external world
(more precisely, each external-world write request generates
a write on each drive, while each external-world read request
generates a read with probability 1/q on each drive.)

As discussed in Section 3, in the presence of read/write in-
terleaving the write latency ”pollutes” the variance of reads.
We would like to avoid this latency contamination and bring
read latency down to the levels that would be experienced
if each drive was read-only. To this effect, we propose mak-
ing the load-balancing of reads partially deterministic, as
follows. Place the N drives on a ring. On this ring con-
sider a sliding window of size s, such that N/q ≤ s ≤ N .
The window moves along the ring one location at a time at
a constant speed, transitioning between successive locations



Readers window

Dk
(6)

Frame k = i + 1

Frame i

DriveDriveDriveDrive DriveDrive

Di...k
(5)

Di-1…k
(1)

Di...k
(2)

Di-2…k
(3)

Di-1…k
(4)

DriveDriveDrive Drive

Di-4…i
(1)

Di-3…i
(2)

Di-2...i
(3)

Di-1…i
(4)

Di
(5)

Di
(6)

Drive Drive
Flash

RAM

Flash

RAM

Figure 8: Each node m accumulates the incoming

writes across frames f . . . f ′ in memory, D
(m)

f...f ′ . While
outside the reading window nodes flush their data.

“instantaneously”. The time it takes the window to complete
a rotation is called the period P . The amount of time, P/N ,
that the window stays in each location is called a frame.

To handle a write request for an object O, each of the N
drives receives one write request of size |O| × q/N (Figure
7, with N = 6 and q = 3/2). To handle a read request for
an object O, out of the s drives in the window N/q drives
are selected at random and each receives one read request of
size |O| × q/N . In other words, the only difference between
the two systems is that reads are not handled by a random
subset of nodes per read request, but by random nodes from
a coordinated subset which changes only after it has handled
a large number of read requests.

In the new system, drives inside the sliding window do not
perform any writes, hence bringing read-latency to read-only
levels. Instead, while inside the window, each drive stores
all write requests received in memory (local cache/DRAM)
and optionally to a log. While outside the window, each
drive empties all information in memory, i.e., it performs
the actual writes (Figure 8). Thus, each drive is a read-
only drive for P/N × s ≥ P/q successive time units and a
write-only drive for at most P (1−1/q) successive time units.

Clearly, there is a tradeoff regarding P . The bigger P
is, the longer the stretches for which each drive will only
serve requests of one type and, therefore, the better the
performance (both in terms of throughput and in terms of
latency). On the other hand, the smaller P is, the smaller
the amount of memory needed for each drive.

Let us now look at the throughput difference between the
two systems. The first system can accommodate any ratio
of read and write loads, as long as the total demand placed
on the system does not exceed capacity. Specifically, if r is
the read-rate of each drive and w is the write-rate of each
drive, then any load such that R/r + Wq/w ≤ N can be
supported, where R and W are the read and write loads,
respectively.

In the second system, s can be readily adjusted on the
fly to any value in [N/q,N ], thus allowing the system to
handle any read load up to the maximum possible rN . For
each such choice of s, the capacity N − s of the system pro-
vides write throughput, which thus ranges between 0 and
Wsep = w × (N − N/q)/q = w × N(q − 1)/q2 ≤ wN/4.
As long as the write load does not exceed Wsep the system
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(a) The read streams throughput remains constant at the
maximum possible, while writes perform as before.
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(b) The read throughput of 4KB requests remains stable at
its maximum performance.

Figure 9: Physically separating reads from writes
leads to a stable and high read performance.

perfoms perfect read/write separation and offers the read la-
tency of a read-only system. We expect that in most shared
storage systems, the reads-to-writes ratio and the redun-
dancy are such that the above restriction is satisfied in the
typical mode of operation. For example, for all q ∈ [3/2, 3],
having R > 4W suffices.

When W > Wsep some of the dedicated read nodes must
become read/write nodes to handle the write load. As a re-
sult, read/write separation is only partial. Nevertheless, by
construction, in every such case the second system performs
at least as well as the first system in terms of read-latency.

4.3.1 Feasibility and Efficiency
We consider the following four dimensions: storage space,

reliability, computation and read performance variance. Sys-
tems performing replication have high space requirements.
On the other hand, they offer reliability, no computation
costs for reconstruction while applying our method improves
their performance variance without affecting the other quan-
tities. In other words, the system becomes strictly better.
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Figure 10: Using our design, the read throughput of
drive A is mostly stable (on the right), with a small
variance due to writes after each drive switch.

Systems performing erasure coding have smaller storage
space requirements and offer reliability, but add computa-
tion cost due to the reconstruction when there is a failure.
Adding our method to such systems improves the perfor-
mance variance. The price is that reading entails recon-
struction, i.e., computation.

Nevertheless, there are improvements regarding reconstruc-
tion speed [12] while optimizing degraded read performance
is a possibility, as was done in [8] for a single failure. In
practice, there are SSD-based systems that perform recon-
struction frequently to separate reads from writes, illustrat-
ing that reconstruction costs are tolerable when N is small
(e.g., 6). We are interested in the behavior of such systems
under various codes as N grows, and identifying the value
of N after which read/write separation becomes inefficient
due to excessive computation.

4.4 Preliminary Evaluation
We built a prototype of our basic design as presented in

Section 4.1 using replication and verified that it provides
high performance, low latency and improved predictability
for reads under mixed workloads. For simplicity, we ignored
the possibility of cache hits or overwriting data still in the
cache and focused on the worst-case performance. In what
follows, the drives switch roles every Tmin = 10 seconds. For
the first experiment we used two instances of drive model
B. The workload consists of large requests of all four types
as shown in Figure 9(a). From the same figure, we see that
reads happen at a total constant rate of 1100 reads/sec. and
are not affected by writes. At the same time, writes have
a variable behavior as in earlier experiments, e.g., Figure 2.
On the other hand, as we saw earlier, on a single SSD reads
have unstable performance due to the writes (Figure 3(b)).

Although we physically separate reads from writes, in the
worst-case there can still be interference due to remaining
background work right after the drives switch modes. In
the previous experiment we noticed little interference and
that was partly due to the drive itself. From Figure 10 we
see that drive A performs significantly better than without
redundancy, though reads do not appear as a perfect line,
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Figure 11: Using our design, on drive B we can pro-
vide predictable performance for reads more than
95% of the time without any heuristics.

possibly due to its small cache. Since that may also hap-
pen with other drives we propose letting the write drive idle
before each switch in order to reduce any remaining back-
ground work. That way, we found that when the drive starts
reading, the interference is minimal and 99% of the time the
throughput is stable. If providing QoS, that idle time can
be charged to the write streams, since they are responsible
for the blocking. Having small amounts of interference may
be acceptable in many cases, however, certain users may be
willing to sacrifice part of the write throughput to further
reduce the chance of high read latency.

4.5 Evaluation with Traces
In this section we include a short evaluation of our design

using the Stg dataset from the MSR Cambridge Traces [10],
OLTP traces from a financial institution and traces from a
popular search engine [14]. Other combinations of MSRC
traces gave us similar results with respect to read/write iso-
lation and skip them. For the following experiments we used
drive model B and performed large writes before running
the traces to fill the drive cache. Evaluating results using
traces can be more challenging to interpret due to request
size differences leading to a variable throughput even un-
der a storage system capable of delivering perfectly stable
performance.

In terms of read/write isolation, Figure 12(a) shows the
high variance of the read throughput when mixing reads and
writes under a single device. Under the same workload our
method provides stable performance (Figure 12(b)). The
write plots for both cases are skipped as they are as unsta-
ble as 12(a). Figure 13(a) focuses on twenty arbitrary sec-
onds of the same experiment and illustrates that read/write
interleaving leads to response times in the range of 100ms.
When a request blocks, all streams get blocked leading to a
lower and variant throughput as illustrated earlier. Looking
more closely, we see that about 25% of the time reads are
blocked due to the writes. On the other hand, from Figure
13(b) we see that our method provides read-only response
time that is low and stable, almost always.
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(a) Under a single drive, reads are blocked by writes (not
shown) making read performance unpredictable.
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(b) Under our design, reads are not affected by writes and
the same amount of reads completes in half the time.

Figure 12: Under a mixture of real workloads our
method stabilizes the read performance.

5. RELATED WORK
Although there are a number of papers on the perfor-

mance and characteristics of SSDs, there is little work taking
advantage of such results in the context of scheduling and
performance consistency. An example of a fair scheduler op-
timized for flash is FIOS [11]. According to the results in
[11], FIOS is an improvement over OS schedulers that are
designed with hard-drive characteristics in mind. FIOS is
not designed to provide read-only performance but rather
as an efficient flash scheduler. We are interested in mini-
mal read latencies that are significantly less than 100ms. In
another direction, SFS [9] presents a filesystem designed to
improve write performance by sequentializing writes.

A number of papers study the performance characteristics
of SSDs. [4] includes a set of experiments on the effect of
reads/writes and access patterns on performance. [5] shows
the effect of parallelism on performance, while [3] presents
a benchmark and illustrates flash performance patterns. In
addition, [13] presents system-level assumptions that need to
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(a) Under a single drive, the garbage collector blocks reads
for tens of milliseconds, or for 25% of the device time.
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(b) Under the proposed design, reads are virtually unaffected
by writes - they are blocked for less than %1 of the time.

Figure 13: High-latency events become rare when
physically separating reads from writes.

be revisited in the context of SSDs. Other work focuses on
design improvements. For example, [1] touches on a number
of aspects of performance such as parallelism and write or-
dering. [6] proposes a solution for write amplification, while
[2] focuses on write endurance and its implications on disk
scheduling. Moreover, [7] focuses on the future of flash and
the relation between its density and performance.

6. CONCLUSIONS
The performance of SSDs degrades and becomes signifi-

cantly unstable under demanding read/write workloads. In
this paper, we introduced a design based on redundancy
that physically separates reads from writes to achieve read-
only performance under mixed workloads. Through exper-
iments, we demonstrated that under replication, our de-
sign enables stable and high performance for reads under
read/write workloads. For future work, we plan to study its
scalability using erasure codes, as well as its generalization
to large-scale distributed flash-only storage systems.
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