
Brados: Declarative,Programmable Object Storage
Noah Watkins, Michael Sevilla, Ivo Jimenez,
Neha Ohja, Peter Alvaro, Carlos Maltzahn

Tradi&onal	
Applica&on	

Storage	Interfaces	

Distributed	Storage	

Emerging	
Applica&ons	

Emerging	 applica&ons	 are	 integra&ng	 into	 the	
en&re	 storage	 stack,	 construc&ng	 domain-
specific	interfaces,	and	reusing	services.	
	

•  Clear,	direct	applica&on	seman&cs	
•  Control	over	low-level	data	layouts	

•  Open-source	 storage	 systems	 are	
exposing	 internal	 services	 to	
applica&ons	

•  Ceph	and	RADOS	provide	numerous	
domain-specific	interfaces	

•  In-produc&on	 interfaces	 support	
high-profile	 applica&ons	 (e.g.	
OpenStack)	

•  Beginning	 to	 see	 third-party	
interface	contribu&ons	

Category	 Specializa0on	 Methods	

Locking	 Shared	
Exclusive	 6	

Logging	
Replica	
State	
Timestamped	

3	
4	
4	

Garbage	Collec&on	 Reference	Coun&ng	 4	

Metadata	
Management	

RBD	
RGW	
User	
Version	

37	
27	
5	
5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 ...	

Ceph	/	RADOS	
LevelDB								RocksDB								WiredTiger								BlueStore	

Log	Striping	

[1]	Balakrishnan,	et.	al,		“CORFU:	A	Shared	Log	Design	for	Flash	Clusters”,	NSDI	2012	

Driving	 example	 is	 ZLog,	 an	 implementa&on	 of	 the	
CORFU	[1]	high-performance	shared-log	protocol	 	on	
top	of	soaware-defined	storage.	

•  Service	reuse:	replica&on	and	erasure	coding	
•  Transparent	upgrades	and	&ering	
•  Explore	new	interface	implementa&ons	

Large	Design	State	Space	
	
Exis&ng	approaches	to	extensibility	rely	on	hard-coded	interfaces	
and	data	layouts.	A	large	design	space	complicates	development	
and	upgrade	decisions.	

Rela%ve	 performance	 difference	 between	 two	 versions	 of	 Ceph	 using	
different	 storage	 strategies.	 Developer	 may	 have	 selected	 non-op%mal	
solu%on	in	older	version.	

Two	 implementa%ons	of	 the	same	 interface	may	have	up	to	an	order	of	
magnitude	difference	in	append	performance	across	log	entry	sizes.	When	
the	 size	 of	 the	 design	 space	 is	 large	 automated	 techniques	 to	 generate	
physical	designs	are	needed.	

Storage	Abstrac0ons	Are	Changing	 Storage	System	Programmability	in	the	Wild	

bloom do
 # epoch guard
 invalid_op <= (op * epoch).pairs{|o,e|
 o.epoch <= e.epoch}
 valid_op <= op.notin(invalid_op)
 ret <= invalid_op{|o|
 [o.type, o.pos, o.epoch, 'stale']}

 # op's position found in log
 found_op <= (valid_op * log).lefts(pos => pos)
 notfound_op <= valid_op.notin(found_op)

 # demux on operation type
 write_op <= valid_op {|o| o if o.type == 'write'}
 seal_op <= valid_op {|o| o if o.type == 'seal'}
end

bloom :write do
 temp :valid_write <= write_op.notin(found_op)
 log <+ valid_write{ |o| [o.pos, 'valid', o.data]}
 ret <= valid_write{ |o|
 [o.type, o.pos, o.epoch, 'ok'] }
 ret <= write_op.notin(valid_write) {|o|
 [o.type, o.pos, o.epoch, 'read-only'] }
end

bloom :seal do
 epoch <- (seal_op * epoch).rights
 epoch <+ seal_op { |o| [o.epoch] }
 temp :maxpos <= log.group([], max(pos))
 ret <= (seal_op * maxpos).pairs do |o, m|
 [o.type, nil, o.epoch, m.content]
 end
end

Brados	is	a	declara%ve	language	based	on	Bloom	(Alvaro,	CIDR	’11)	that	 is	used	to	express	storage	
interfaces.	 Shown	 above	 is	 a	 snippet	 of	 the	 specifica%on	 of	 the	 CORFU	 protocol.	 Op%miza%on	
techniques	are	applied	to	generate	an	implementa%on.	

•  Dataflow	analysis	
•  Performance	sta%s%cs	

from	storage	system	
•  Op%miza%on	
•  Plan	genera%on	

Declara0ve	Language	

Example	Service	:	Distributed	Shared-Log	

This	work	is	par&ally	supported	by	a	CROSS	research	appointment.	For	more	informa&on	about	CROSS	please	visit	
hbp://cross.ucsc.edu.	The	Zlog	project	an	an	open-source	project	published	at	hbps://github.com/noahdesu/zlog.	You	
can	contact	the	author	Noah	Watkins	at	jayhawk@soe.ucsc.edu.		

Large	configura&on	
space	of	hardware	
and	soaware	
components.	

Custom	interface	
and		physical	
design	space	

