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1 Introduction

Popular storage systems support diverse storage abstrac-
tions by providing important disaggregation benefits. In-
stead of maintaining a separate system for each ab-
straction, unified storage systems, in particular, sup-
port standard file, block, and object abstractions so the
same hardware can be used for a wider range and a
more flexible mix of applications. As large-scale uni-
fied storage systems continue to evolve to meet the re-
quirements of an increasingly diverse set of applications
and next-generation hardware, de jure approaches of the
past—based on standardized interfaces—are giving way
to domain-specific interfaces and optimizations. While
promising, the ad-hoc strategies characteristic of current
approaches to co-design are untenable.

The standardization of the POSIX I/O interface has
been a major success. General adoption has allowed ap-
plication developers to avoid vendor lock-in and encour-
ages storage system designers to innovate independently.
However, large-scale storage systems are generally dom-
inated by proprietary offerings, preventing exploration
of alternative interfaces when the need has presented it-
self. An increase in the number of special-purpose stor-
age systems characterizes recent history in the field, in-
cluding the emergence of high-performance, and highly
modifiable, open-source storage systems, which enable
system changes without fear of vendor lock-in. Unfortu-
nately, evolving storage system interfaces is a challeng-
ing task requiring domain expertise, and is predicated on
the willingness of programmers to forfeit the protection
from change afforded by narrow interfaces.

Malacology [14] is a recently proposed storage sys-
tem that advocates for an approach to co-design called
programmable storage. The approach exposes low-level
functionality as reusable building blocks, allowing devel-
opers to custom-fit their applications to take advantage
of the existing code-hardened capabilities in an underly-
ing system, and avoid duplication of complex and error-

prone services. By recombining existing services in
the Ceph storage system [21], Malacology demonstrated
how two real-world services, a distributed shared-log
and a file system metadata load balancer, could be con-
structed using a ‘dirty-slate‘ approach. Unfortunately,
such an ad-hoc approach can be difficult to reason ef-
fectively about and manage.

Despite the benefits of the approach demonstrated by
Malacology, the technique requires navigation of a com-
plex design space while simultaneously addressing often
orthogonal concerns (e.g. functional correctness, perfor-
mance, and fault-tolerance). Worse still, the availabil-
ity of domain expertise required to build a performant
interface is not a fixed or reliable resource. As a re-
sult, the interfaces built with Malacology are sensitive to
evolving workloads. This results in burdensome mainte-
nance overhead when underlying hardware and software
changes.

To address these challenges, we advocate for the use
of high-level declarative languages (e.g. Datalog) as a
means of programming new storage system interfaces.
By specifying the functional behavior of a storage inter-
face once in a relational (or algebraic) language, opti-
mizers built around cost models can explore a space of
functionally equivalent physical implementations. Much
like query planning and optimization in database sys-
tems, this approach will logically differentiate correct-
ness from performance, and protect higher-level services
from lower-level system changes [13]. However, despite
the parallels with database systems, this paper demon-
strates, and begins to address, fundamental differences
in the optimization design space.

In the next section we expand on the concept of pro-
grammable storage, and then highlight the size and com-
plexity of the design space confronting developers that
embark on co-designing applications and storage. Using
a distributed shared-log interface as a motivating exam-
ple, we propose the use of a declarative language capable
of capturing functional behavior for defining future stor-



age system interfaces.

2 Programmable Storage

Common workarounds when application requirements
are not met by an underlying storage system roughly fall
into three categories:

“Bolt-on services” improve performance or enable
new features, but come at the expense of additional
hardware, software sub-systems, and dependencies that
must be managed, as well as trusted. For instance,
such classes of limitations inspired many extensions to
Hadoop [6, 9, 8, 12].

Application changes introduce data management in-
telligence or integrate domain-specific middleware into
an application. When application changes depend on
non-standard storage semantics (e.g. relaxed POSIX file
I/O or MPI-IO hints) the resulting coupling can be frag-
ile. For example, both SciHadoop [7] and Rhea [10] do
an excellent job of partitioning data in Hadoop appli-
cations, but may not withstand the test of time for fu-
ture workloads, since the partitioning is specific to the
use case. Approaches to I/O optimization in middleware
(e.g. MPI-IO) take advantage of an application’s struc-
tured and partitioned data model, but face portability
challenges when mapping parallel I/O onto a bytestream.
The challenge is, in part, due to the wide range of opti-
mization strategies that are dependent on low-level stor-
age system magic numbers for optimal data partitioning,
distribution, and alignment. The PLFS file system takes
an approach of virtualizing the POSIX byte stream over
a set of logs to address this issue [5].

Storage system modifications are often a last resort
because such heavyweight solutions range from merely
changing the underlying system to designing entirely
new systems. This approach requires at a minimum,
a certain level of access to modify the system, signif-
icant cost, domain knowledge, and extreme care when
building or modifying critical software that can take
years of code-hardening to trust. For example, HDFS
fails to meet many needs of metadata-intensive work-
loads [15]. This has led to modifications to its architec-
ture and API [3] to improve performance.

Rather than relying on storage systems or applications
to change, Malacology exposes data management ser-
vices already present in the underlying system, which
can be re-used to avoid code duplication and reliance on
external services.

The Malacology Approach Malacology is a prototype
programmable storage system based on Ceph that im-
proves the development experience of co-designing ap-
plications and storage systems by exposing common in-

Figure 1: Malacology implementation in Ceph. Existing sub-systems
are composed to form new services and application-specific optimiza-
tions.

ternal storage services for re-use [14]. Figure 1 shows
the architecture of Malacology, along with the set of ser-
vices that are exposed, such as domain-specific object
interfaces, cluster-level metadata management, and load-
balancing. While Ceph natively exposes file, block, and
object abstractions, Malacology demonstrates the con-
struction of two real-world services using only the com-
position of existing interfaces present in Ceph.

One of these synthesized interfaces is a high-
performance distributed shared-log based on the CORFU
protocol [2]. While CORFU can be a stand-alone system,
Malacology is capable of instantiating the same stor-
age abstraction and approximating the same optimiza-
tions. High-performance in CORFU is achieved in part
through the use of a soft-state network-attached counter.
Malacology approximates this optimization using the
capability-based caching mechanisms in the Ceph dis-
tributed file system, modeling the counter as a shared re-
source (i.e., file metadata). Additionally, the co-designed
device interfaces used in CORFU are critical to the safety
of the protocol, and are replicated in Ceph using custom
software-based interfaces to storage objects.

Although powerful, storage interface construction in
Malacology (Data I/O interface in Figure 1) is a double-
edged sword. The narrowly-defined interfaces dominat-
ing systems today have been a boon to developers by
limiting the size of the design space where applications
couple with storage, allowing systems to evolve indepen-
dently. Programmable storage lifts the veil on the system
and, thereby forces developers of higher-level services to
confront a much broader set of possible designs.

3 Design Space

In this section we highlight the size and complexity
of the design space of programmable storage, showing
how the ad-hoc approach used in Malacology is limited
by increases in software design and maintenance of co-
designed interfaces. Note that while there are many inter-
faces in Malacology, we focus on the Data I/O interface



for our examples. We report on our experience building
multiple functionally equivalent implementations of the
CORFU protocol in Ceph, and demonstrate that static
selection of optimization strategies and tuning decisions
can lead to performance portability challenges.

System Tunables and Hardware. A recent version of
Ceph from May 2016 had 994 tunable parameters, con-
trolling all aspects of the system such as the object stor-
age server (195), low-level components such as XFS
and BlueStore (95), and sub-systems such as RocksDB
and journaling (29). Previous investigations exploring
the application of auto-tuning techniques to systems ex-
hibiting a large space of parameters was met with lim-
ited success [4]. And challenges associated with this
approach are exacerbated in the context of application-
specific modifications and dynamically changing work-
loads which only serve to increase the state space size.

Hardware. Ceph is intended to run on a wide vari-
ety of commodity, high-end, and low-end hardware, in-
cluding newer high-performance non-volatile storage de-
vices. Each hardware configuration encompasses spe-
cific sets of performance characteristics and tunables
(e.g. I/O scheduler selection, and policies such as time-
outs). In our experiments, we tested a variety of hard-
ware and discovered a wide range of behaviors and per-
formance profiles. While we generally observe the ex-
pected improvements on faster devices, choosing the best
implementation strategy is highly dependent on hard-
ware. This will continue to be true as storage systems
evolve to support new technologies such as persistent
memories and RDMA networks that may require entirely
new storage interfaces for applications to fully exploit the
performance of hardware.

Takeaway: Evolving hardware and system tunables
presents a challenge in optimizing systems, even in static
cases with fixed workloads. Programmable storage ap-
proaches that introduce application-specific interfaces
are sensitive to changes in workloads and the cost models
of low-level interfaces that are subject to change. This
greatly increases the design space and set of concerns
that must be addressed by programmers.

Software. The primary source of complexity in large
storage systems is, unsurprisingly, the vast amount of
software written to handle challenges like fault-tolerance
and consistency in distributed heterogeneous environ-
ments. We have found that even routine upgrades can
cause performance regressions which manifest as obsta-
cles for adopters of a programmable storage approach to
development. We use the CORFU shared-log protocol as
a motivating example.

Shared-log. In our implementation of CORFU on
Ceph [18] the shared-log is striped across a set of ob-

Figure 2: Performance of four shared-log implementations on two dif-
ferent versions Ceph.

jects in Ceph to provide parallel I/O bandwidth. Each
object implements the custom storage interface that ex-
poses a 64-bit write-once address space, required by the
CORFU protocol. While this interface can be built di-
rectly into flash devices [20], we constructed four dif-
ferent versions in software as native object interfaces in
Ceph. Each of our implementations differs with respect
to which internal interfaces are used (e.g. RocksDB,
and/or a bytestream) and how data is striped and parti-
tioned in the system.

Figure 2 shows the append throughput of four such
implementations running on two versions of Ceph from
2014 and 2016 using the same hardware, in which
the performance in general is significantly better in the
newer version of Ceph. However, if we consider other
costs such as software maintenance these results reveal
another trade-off. The top two best implementations run-
ning on the 2014 version of Ceph perform with nearly
identical throughput, but have different implementation
complexities. When we consider the performance of the
same implementations on the newer version of Ceph a
challenge presents itself: developers face a reasonable
choice between a simpler implementation in the 2014
version of Ceph with little performance difference, and a
storage interface which will perform significantly worse
in the 2016 version of Ceph, requiring a significant over-
haul of low-level interface implementations. We believe
that these trade-offs will continue to present themselves
as new hardware is supported and internal storage inter-
faces evolve.

Group commit. In addition to the broad challenge of
design and implementation, tuning application-specific
interfaces for a static implementation can be challeng-
ing. Group commit is a technique used in database query
execution that combines multiple transactions in order to
amortize over fixed per-transaction costs [11]. We imple-
mented two batching strategies for shared-log appends.
The first approach called Basic-Batch groups multiple



requests together, but processes each sub-request (i.e.
log append) independently at the lowest level. The sec-
ond approach called Opt-Batch examines the requests in
a batch and issues efficient low-level I/O requests (e.g.
range queries and data sieving [17]). With a batch size
of 1 request both approaches achieve approximately 14K
appends per second with a single storage node. With a
batch size of 5 requests Basic-Batch and Opt-Batch per-
formance increases by 2.3x and 4.2x, respectively, and
with a batch size of 10 requests the increase is 2.7x and
7.0x, achieving 97K appends per second at the high end.

While this batching technique significantly increases
throughput, the story is more complex. The effectiveness
of this technique requires tuning parameters such as forc-
ing request delays to achieve larger batch sizes, which in
turn have a direct effect on latency. While performance
of this technique benefited from using range queries and
data sieving, these interfaces are sensitive to outliers that
generate large I/O requests containing a high percentage
of irrelevant data. In Figure 3a the Basic-Batch case han-
dles each request in a batch independently and, while the
resulting performance is worse relative to the other tech-
niques, it is not sensitive to outliers. The Opt-Batch im-
plementation achieves high append throughput, but per-
formance degrades as the magnitude of the outliers in the
batch increases due to wasted I/O. In contrast, an Outlier-
Aware policy applies a simple heuristic to identify and
handle outliers independently, resulting in only a slight
decrease in performance over the best case.

Takeaway: Choosing the best implementation of a
storage interface depends on the timing of development
(e.g. system version); the expertise of programmers and
administrators; tuning parameters and hardware config-
uration; and system-level and application-specific work-
load characteristics. A direct consequence of such a large
design space is that some choices may quickly become
sub-optimal as aspects of the system change. This forces
developers to revise implementations frequently, increas-
ing the risk of introducing bugs that, in the best case, af-
fect a single application and, in monolithic designs, may
cause systemic data loss.

We believe a better understanding of application and
interface semantics exposes a frontier of new and bet-
ter approaches with fewer maintenance requirements
than hard-coded and hand-tuned implementations. An
ideal solution to these challenges is an automated
system search of implementations—not simply tuning
parameters—based on programmer-produced specifica-
tions of storage interfaces in a process independent of
optimization strategies, and guaranteed to not introduce
correctness bugs. Next we’ll discuss a candidate ap-
proach using a declarative language for interface spec-
ification.

4 Declarative Programmable Storage

Current ad-hoc approaches to programmable storage re-
strict use to developers with distributed programming ex-
pertise, knowledge of the intricacies of the underlying
storage system and its performance model, and use hard-
coded imperative methods. This limits the use of opti-
mizations that can be performed automatically or derived
from static analysis. Based on the challenges we have
demonstrated stemming from the dynamic nature and
large design space of programmable storage, we propose
an alternative, declarative programming model which re-
duces the learning curve for new users, and allows exist-
ing developers to increase productivity by writing fewer,
more portable lines of code.

The model we propose corresponds to a subset of
Bloom, a declarative language for expressing distributed
programs as an unordered set of rules [1]. Bloom rules
fully specify program semantics and allow developers to
ignore the details associated with program evaluation.
This level of abstraction is attractive for building stor-
age interfaces whose portability and correctness is crit-
ical. We use Bloom to model the storage system state
uniformly as a collection of relations, with interfaces ex-
pressed as a collection of queries over a request stream
that are filtered, transformed, and combined with other
system state. We present a brief example of the CORFU
shared-log interface expressed using this model.

Example: CORFU as a Query We model the stor-
age interface of the CORFU protocol as a query in our
declarative language in which the shared-log and meta-
data are represented by two persistent abstract collec-
tions mapped onto physical storage. This transformation
permits optimizations and implementation details (e.g.
log striping and partitioning) to be discovered and ap-
plied transparently by an optimizer. Since the specifica-
tion of the interface is invariant across system changes
and low-level interfaces, the optimizer can automatically
render execution decisions and build indexes using the
performance characteristics of specific access methods.
For example a low-level indexing engine for text will
likely be out-performed by other engines for the CORFU
64-bit write-once address space interface. Likewise, an
instance of the interface that uses fixed log entries can
directly map log entries onto a low-level byte stream,
avoiding an explicit index in some situations.

Amazingly, the semantics of the entire storage inter-
face requirements in CORFU1 are expressible using only
a few Bloom code snippets amenable as input to an op-
timizer. Figure 3b shows the state transition diagram for
the CORFU storage interface and Figure 3c shows the

1Due to space limitations refer to [19] for a full program listing.
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Figure 3: (a) batching performance with and without outlier detection (b) state machine for the CORFU storage device. (c) logical dataflow of the
CORFU storage protocol which could not be more concise and still capture the state machine.

corresponding dataflow diagram for the Bloom CORFU
protocol. Beyond the convenience of writing less code,
the entire experience of designing and writing an inter-
face such as CORFU in a declarative language such as
Bloom eases the process of constructing convincingly
correct implementations. Specifically, the high-level de-
tails of the implementation mask distracting issues re-
lated to the physical design and the many other “gotchas”
associated with writing low-level systems software.

Our current Bloom specification of CORFU assumes
the existence of an external sequencer service to assign
log positions. However, we are working towards a spec-
ification that defines the sequencer service as a view
over the log, whose state is managed in volatile storage.
A declarative specification will be critical to providing
portability of the service, since storage systems inter-
nally utilize volatile storage in many forms (e.g. memory
caches and non-replicated data). For example, our work
in Malacology showed how inode state in a distributed
file system could be used to build a sequencer, but an
object-based storage system could place sequencer state
in an object cache while providing fast-path access that
is difficult to achieve with the consistency and durability
requirements of non-volatile object state.

5 Discussion and Conclusion

It’s clear that storage systems are currently in the midst of
significant change and with few guideposts available to
developers navigating a large and complex design space.
This has served as the primary source of motivation for
our use of declarative languages. And while our imple-
mentation does not yet map a declarative specification on
to a particular physical design, the specification provides
a powerful infrastructure for automating this mapping
and achieving other optimizations. Given the declara-
tive nature of the interfaces we have defined, we can
draw parallels between the physical design challenges

described in this paper and the large body of mature
work in query planning and optimization. The Bloom
language that we use as a basis for a declarative spec-
ification produces a dataflow graph that can be used in
static analysis, and we envision that this graph will be
made fully available to the storage system to exploit be-
fore and during runtime.

We are currently considering the scope of optimiza-
tions that are possible with such a dataflow model in the
context of storage systems. For instance, without seman-
tic knowledge of an interface, batching techniques de-
scribed in Section 3 are limited to optimizations such as
selecting magic values for timers and buffer sizes. Se-
mantic information expands the design space, permitting
intelligent reordering or coalescing that depends on rela-
tionships between operations, going beyond what auto-
tuning has previously considered.

Finally, we emphasize that new non-volatile memories
are exposing code path length as a bottleneck [16], and
that achieving a desired performance level while propos-
ing higher-level abstractions is a critical concern that
must be addressed. We see advancements in main mem-
ory databases as an indicator that performance consider-
ations are being addressed in other similar contexts.

Conclusion. Optimizing every new or changed ap-
plication as storage systems evolve is obviously imprac-
tical. A storage system is not the same as a database
system, but techniques from database optimization can
potentially be leveraged to address complexity, perfor-
mance and transparent portability for applications run-
ning on evolving storage systems. Generalizing from the
example we described, we think this approach is innova-
tive and promising.
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