
Popper Pitfalls: Experiences Following
a Reproducibility Convention

Michael A. Sevilla
University of California, Santa Cruz

msevilla@soe.ucsc.edu

Carlos Maltzahn
University of California, Santa Cruz

carlosm@ucsc.edu

ABSTRACT
We describe the four publications we have tried to make repro-
ducible and discuss how each paper has changed our workflows,
practices, and collaboration policies. The fundamental insight is
that paper artifacts must be made reproducible from the start of the
project; artifacts are too difficult to make reproducible when the
papers are (1) already published and (2) authored by researchers
that are not thinking about reproducibility. In this paper, we present
the best practices adopted by our research laboratory, which was
sculpted by the pitfalls we have identified for the Popper conven-
tion. We conclude with a “call-to-arms" for the community focused
on enhancing reproducibility initiatives for academic conferences,
industry environments, and national laboratories. We hope that our
experiences will shape a best practices guide for future reproducible
papers.

CCS CONCEPTS
• Software and its engineering→Reusability;Empirical soft-
ware validation; Software evolution; Collaboration in software
development;

KEYWORDS
Software Testing ; Performance Engineering

ACM Reference Format:
Michael A. Sevilla and Carlos Maltzahn. 2018. Popper Pitfalls: Experiences
Following a Reproducibility Convention. In P-RECS’18: First International
Workshop on Practical Reproducible Evaluation of Computer Systems, June
11, 2018, Tempe, AZ, USA. ACM, New York, NY, USA, 5 pages. https://doi.
org/10.1145/3214239.3214243

1 INTRODUCTION
The importance of reproducibility outweighs its difficulty. While
wrestling with large amounts of data, millions of lines of code,
and diverse developer groups, it is extremely hard to remember
to make workflows understandable, let alone reproducible. But
our research group has found that the benefits of reproducibility,
from a research, educational, and productivity standpoint, make
the pain points worth it. After all, the scientific method requires

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
P-RECS’18, June 11, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5861-3/18/06. . . $15.00
https://doi.org/10.1145/3214239.3214243

Figure 1: Illustration of theworkflowused in our papers; Fig-
ure is adapted from [2]. For (1) - the visualization component
- we use Jupyter, LATEX, and Docker; for (2) - the code compo-
nent - we use GitHub and Docker; for (3) - the multi-node
component - we use Ansible and CloudLab; and for (4) - the
data set component - we use GitHub.

such practices and other fields have been emphasizing the repro-
ducibility of experimental results for centuries; it is about time that
the field of computer systems change its ad-hoc workflows to be
more reproducible.

Once we adopted this philosophy, the road to reproducible re-
search and paper artifacts was not smooth. We use the Popper
convention [2] because of its focus on open-source cluster man-
agement toolkits. Our workflow uses the DevOps tools shown in
Figure 1 and is described in more detail in Section §2. We have
produced four Popper-compliant papers, three of which have been
published in the proceedings of top conferences.

While our experience with these state-of-the-art DevOps tools
have been delightfully straightforward, which is no doubt a tes-
tament to the importance of reproducibility in real, large-scale
clusters, our struggle composing these tools together in a coherent
way has been a real challenge. From designing workflows with
these tools, we have developed a list of pitfalls that wasted time
and effort. Our contributions are as follows:
• the structure and workflow of some of our papers, using a
baseline template designed for the Ceph [8] storage system
(Section §2).
• three pitfalls for reproducibility that severely limited produc-
tivity in early papers; designing best practices that address
these pitfalls before starting the project saved us time and
effort in subsequent research explorations (Section §3).
• a call-to-arms for the downfall of practices that fly in the face
of reproducibility. We highlight difficulties with academic

https://doi.org/10.1145/3214239.3214243
https://doi.org/10.1145/3214239.3214243
https://doi.org/10.1145/3214239.3214243

P-RECS’18, June 11, 2018, Tempe, AZ, USA Michael A. Sevilla and Carlos Maltzahn

Paper [Reference] Status Reason

Malacology: A Programmable Storage System [6] PASS Reproducing results on different clusters not tested

Cudele: An API and Framework for Programmable Consistency
and Durability in a Global Namespace [3] GOLD Tested on multiple clusters, READMEs for re-running ex-

periments provided

Programmable Caches with a Data Management Language &
Policy Engine [4] FAIL Security issues with public facing repositories and private

networks/systems

Tintenfisch: File System Namespace Schemas and Generators [5] GOLD No performance results, just software replicability needed

Table 1: Papers following the Popper Convention. The statuses are from [1], where GOLDmeans results are reproducible, PASS
means experiments run, and FAILmeans experiment artifacts are available (butmaynot run).We graded the repositories based
on our own internal evaluations – ideally, this evaluation would be done by someone outside the team, like a paper reviewer
or a member of the conference committee. Over time, our Popper-compliance has improved, except for the work we did in [4],
which faced security obstacles (see Section §4.2).

conferences, work at national laboratories, and work in in-
dustry because that is where we have the most experience
(Section §4).

We give each of our paper repositories a status using the con-
vention in [1]: GOLD means that results are fully reproducible,
PASS means the experiments will run, and FAIL means that experi-
ments are not guaranteed to execute. A FAIL status is still Popper-
compliant because experiment artifacts and results are available.
Over time, our Popper status has improved from PASS to GOLD
because we were able to shape our best practices from our observed
pitfalls. We also learned that going back and making published
papers Popper-compliant is too difficult and is not incentivized, as
described in Section §3.1. The one FAIL status we have can be at-
tributed to security issues we had working at a national laboratory,
as described in more detail in Section §4.2. It is our hope that the
pitfalls we stumbled over can be used as a best practices guide for
future articles.

2 POPPER-COMPLIANT PAPERS
We have produced four Popper-compliant papers, as shown in Ta-
ble 1. These papers follow the reader/reviewer sample workflow
outlined in [2] and shown in Figure 1. For the visualization compo-
nent (1), we use Jupyter notebooks. The notebooks themselves are
versioned with Git and users interact with local copies by cloning
the repository and launching a Jupyter Docker container. The paper
is written in LATEXand built with a Docker container. For the code
component (2), both the source code for the system itself and the
deploy/experiment code is stored on GitHub. When running exper-
iments, we use Docker containers to isolate libraries and binaries.
For the multi-node component (3), we use CloudLab machines and
Ansible to script deployment and experiment orchestration. For the
data set components (4), we use GitHub to store results files; our

inputs and results are small enough that we do no need a larger
capacity. GitHub allows files up to 50MB and stores data on S3.

Our experiments start with a baseline. To describe the process,
we reference our ceph-popper-template1 set up on CloudLab. Users
setup SSH keys and deploy CloudLab nodes using our CephFS
Profile2. The profile has the nodes automatically install Docker on
bootup using our install3 script. After the nodes finish booting (i.e.
their status on the CloudLab GUI is READY), users push SSH keys
using a convenience script4.

The deploy code is based on ceph-ansible5, a tool that configures
hardware and software for Ceph. We forked the project and made
it less dependent on Python. To run an experiment, users log into
the head node and clone the ceph-popper-template repository. This
repository has submodules that point to ceph-ansible and our own
custom roles; configuration files for our Ceph setup; and helper
scripts written in bash that deploy Ceph and run the benchmarks.
For more information on the Ceph template, see the README6 and
for more information on the baseline and pipelines terminology,
see the Popper Convention quickstart7.

An outline of this organization is shown in Figure 2, where solid
lines are directory links and dashed lines indicate which directories
a script uses. A sample experiment is in the baseline/ directoriy,
which was created using the Popper CLI. Users configure their
cluster by specifying hostnames and login user names in the hosts
file. Users also specify the Ceph services that should be deployed

1https://github.com/michaelsevilla/ceph-popper-template
2https://www.cloudlab.us/p/CephFS/CephFS-HEP
3https://github.com/michaelsevilla/ceph-popper-template/blob/master/hardware/cloudlab/-
install.sh
4https://raw.githubusercontent.com/michaelsevilla/ceph-popper-
template/master/hardware/cloudlab/pushkeys.sh
5https://github.com/ceph/ceph-ansible/wiki
6https://github.com/michaelsevilla/ceph-popper-template
7http://falsifiable.us/

Popper Pitfalls: Experiences Following
a Reproducibility Convention P-RECS’18, June 11, 2018, Tempe, AZ, USA

Figure 2: Organization of our experiment directories.
baseline/ is an example experiment and contains scripts
populatedwith the Popper CLI. The run.sh script usesmany
directories and files to setup and run experiments, as indi-
cated by the dashed lines.

using the ansible/ directory8. This directory has code for deploy-
ing Ceph and its components, where the *.yml files are Ansible
playbooks that start and configure components: ceph.yml starts
Ceph and can be modified to specify which daemons to launch,
cleanup.yml tears Ceph down, and monitor.yml starts daemons
that monitor performance. High level configurations are in the
vars.yml file. We separate these components into different play-
books so users can mix and match Ceph services. Similarly, the
workloads directory has scripts for running the baseline bench-
marks. The other files and directories are Ansible configuration
files used by the playbooks. We have posted a tutorial on our blog9
to guide users through this setup. When complete, users execute
the run.sh to start the job.

3 POPPER PITFALLS
To produce Popper-compliant papers, we needed to change our
workflows and experimental procedures. We have shaped our best
practices from the following pitfalls:

3.1 Reproducibility is not a 1st Class Citizen
Popper-compliance must be observed throughout the paper-writing
process. Attempts to make published papers Popper-compliant
failed for three reasons: (1) there is no incentive from the perspective
of a researcher, (2) it is too hard to remember the experimental
workflow, and (3) the artifacts cannot be added to the camera-ready
article. We started trying to make [7] Popper-compliant10 but gave
up because the effort would not have been rewarded, as the paper
had already been presented and published.

Making reproducibility a 1st class citizen introduces a careful
design decision: how does the user decide which results are ex-
ploratory and which are complete? We do not want to waste space
by saving results that do not contribute to the paper but, at the
same time, how do we know when an experiment is worthy of

8https://github.com/michaelsevilla/ceph-popper-template/tree/master/pipelines/baseline/ansible
9http://programmability.us/mantle/blog2-ceph
10https://github.com/michaelsevilla/mds

being included in the paper? Discipline must be exercised through-
out the paper-writing process to identify useful experiments and
immediately polish them to be Popper-compliant.

Another pitfall we face is cross-cluster compatibility. After iden-
tifying results as being useful, we usually find cluster-specific files
hard-coded throughout the tree, configuration files randomly prop-
agated to different directories, visualization files reliant on data
specified with hard-coded paths, and graphs that are not created
automatically. To address this, we must exercise discipline to sepa-
rate cluster-specific files from cluster-agnostic files; we do this with
configs_*/ directories in our ceph-popper-template repository.

Finally, organization and documentationmust be required through-
out the paper-writing process. We failed to do this in early papers
and this causes the most work later on. System and experiment
deploy code is rarely self-explanatory. At a minimum, each experi-
ment directory must contain a README specifying how to run the
jobs. To address this, we recommend relying heavily on Docker-
Hub, GitHub, and collaboration; making things public incentivizes
tidiness and organization. Using internal Docker or Git repositories
hampers Popper-compliance and discourages community involve-
ment.

3.2 Poorly-Defined Collaboration Roles
Collaboration speeds up code development and, as stated in the
previous section, can be used as motivation for maintaining Popper-
compliant repositories; but collaboration can also hamper the pro-
cess. Researchers have different workflows and preferences. Com-
mitting system and experimental deploy codewith different toolkits,
documentation, and styles to the same repository can result in a
confusing organizational structure. To address this, we recommend
that the first author of the paper (1) produce a style guide, either by
committing a couple of experiments or adding detailed READMEs
and (2) act as the gatekeeper for all code. We recommend using
GitHub because it nicely formats READMEs and supports pull
requests, issue trackers, and project boards. Rather than having
meetings to agree on experiment organization, we recommend it-
eratively combining code from collaborators with pull requests so
the repository grows organically and quickly in the style approved
by the first author.

Another obstacle to collaboration is conflicting updates, espe-
cially when editing the paper. We used to assign locks to people
in an ad-hoc fashion over email but this is not scalable. Instead,
we now use Git to manage conflicts. Before issuing a pull request,
which notifies the first author, GitHub will notify committers of
changes they made in parallel with other changes. Our policy is to
force committers to resolve these merge conflicts before bothering
the first author. While we still recommend issuing pull requests to
make sure the first author approves of the style, the merge conflict
workflow has been an effective way to avoid annoying the first
author with destructive changes.

Git has not totally solved merge conflicts for papers. Papers
have long sentences and sometimes a paragraph is written on a
single line of text, without line breaks. Because Git was designed
for code, which has many line breaks, it is hard to see changes when
the document is structured as one long line. Adding line breaks
partially solves the problem but adds new complexities. For example

P-RECS’18, June 11, 2018, Tempe, AZ, USA Michael A. Sevilla and Carlos Maltzahn

adding small amounts of text may cause lines to “spill" onto the next
line, so a diff of the commits shows the entire paragraph as being
changed. Similarly, users with different line break thresholds might
re-arrange paragraphs differently, leading to the same problem. If
Git or GitHub were to recognize that these source files were LATEX,
the visual problems could be mitigated.

3.3 Failure to Maintain Pointers
Popper-compliant papers provide pointers to graph artifacts, in-
cluding results, input files, and deploy code. But these links are
problematic because they must be maintained over time, even years
after the paper is published. We have had trouble maintaining these
pointers because they (1) are ephemeral, (2) include pointers to
other repositories, and (3) include pointers to different repository
hosting sites. These problems arise because we are using GitHub
and DockerHub as archival tools. Moving artifacts to a proper
archival system (with long term storage and labeling semantics
like DOIs) may be an option in the future, but GitHub works much
better for research and exploration. Choosing between these op-
tions is a trade-off we have to make because there is no easy way
for turning an exploration platform like GitHub into an archival
system.

Ephemeral links and making sure that pointers are live is our
biggest pain point. Small, seemingly benign changes end up con-
fusing users wanting to reproduce our results. This is an artifact of
how the internet was built, but making sure that these links are live
is one of the hardest challenges for Popper-compliance. To combat
this, we suggest maintaining continuous integration pipelines that
read the paper source code and send REST requests to websites to
ensure that 404 codes are not returned.

Pointers to other repositories can make the Popper-compliant
repository confusing and difficult to navigate. For example, our
Cudele paper had Git submodule pointers to 3 other GitHub reposi-
tories: one for Ansible deployment code for Ceph, one for Ansible
deployment code for monitoring code written by our research lab,
and one for our paper bibliography. Users unfamiliar with Ansi-
ble or LATEXwould have trouble navigating these large code bases.
Unfortunately, this practice is necessary to avoid duplicating func-
tionality and ensuring future-proof modules. Our recommendation
for addressing this problem is to minimize the number of repository
pointers and to document them thoroughly, including the reasons
that the pointer is necessary and what the other repository does.

Finally, pointers to different repository sites can make Popper-
compliant papers difficult to understand. Again, this is a necessary
evil because research systems can be large and complicated with
many moving parts. For example, our Cudele paper uses a GitHub
repository to maintain our source code for our modified Ceph
version, a GitHub repository to maintain our paper and deploy
code, a GitHub repository to maintain our common deploy code
modules (for monitoring), a DockerHub repository for housing
software images with compiled binaries for our modified Ceph
version, and a CloudLab repository to house our base images. Again,
the recommended solution for maintaining this complicated web
of registry hubs is to thoroughly document the process.

4 COMMUNITY COOPERATION
We have shown and described reproducibility pitfalls, but equally
important is community buy-in. Next, we outline practices that
have been detrimental to our Popper-compliance initiatives.

4.1 Conference Requirements
The most common obstacle to our Popper-compliance efforts is
double blinded submissions. The process is a burden, as we must
create anonymous repositories and remove graph artifacts, but also
blocks communication between researchers and reviewers. Pro-
viding evidence that the experiments work gives credence to the
experiment and allows reviewers the chance to examine experi-
ment parameters more closely. We go a step further and propose
removing all anonymity from the review process, facilitating a com-
munication channel between researchers and reviewers with the
sole intent of improving the quality of the paper. We applaud the
efforts of SC’18, IPDPS’18, and ASPLOS’18 as they move towards
this approach with multiple revision rounds, but argue for more
transparent review processes. We are encouraged that in the review
of one of our papers, a reader specifically asked for source code
and reproducibility artifacts; at that point, we gladly made Popper
source links available.

A second obstacle is that many conferences lack a clear definition
of reproducibility and replicability, which confuses both submitters
and reviewers. One conference we submitted to had reviewers that
posited that our paper reproducibility artifacts were out of scope
while the submission website clearly had our definition of repro-
ducibility. This confusion is frustrating and can lead to contentious
reviews and rebuttals. To remedy the situation, we recommend em-
phasizing reproducibility initiatives to reviewers, even going as far
as to reward papers that have clearly thought about reproducibility.

4.2 Industry/Laboratory Requirements
We understand the monetary incentives to propriety systems but
workingwith code in these environments severely hampers our abil-
ity to make papers Popper-compliant. Some companies in industry
keep all code repositories private. Furthermore, many companies
have multiple repositories because development teams like using
version control systems (e.g., Git or SVN) and hosting services (e.g.,
GitHub, GitLab, etc.) that they are familiar with. In larger com-
panies that acquire startups, this is a big problem as every group
of developers brings new ways of managing code. Obviously, this
makes Popper-compliance impossible, except in a general sense.

We urge companies in industry to adopt a public, unified version
control system and to provide reproducibility artifacts. Obviously,
industry entities have very little incentive to do this. To incentivize
this process for industry, we suggest that conferences provide recog-
nition, either monetary or award-based, to companies that adopt
this philosophy.

Another obstacle to Popper-compliance is security. Many sys-
tems in national laboratories require clearance and access is only
granted to US citizens. In fact, many systems are not even con-
nected to the internet to discourage contact with the outside world.
While laboratories are expected to be research havens, their pri-
orities are obviously security over open research practices. We
recommend evangelizing reproducibility in these communities in

Popper Pitfalls: Experiences Following
a Reproducibility Convention P-RECS’18, June 11, 2018, Tempe, AZ, USA

the hopes of appointing “reproducibility officers" that are internal
to the national laboratories. These officers would have the security
clearance to operate large HPC clusters and the expertise to verify
the reproducibility of a paper’s artifacts and performance claims.

5 CONCLUSION
We have outlined the structure of our “reproducible" papers and
showed the complexity of researching in this way. We iterated
to a Popper-compliant paper-writing process after encountering
numerous pitfalls, which we have documented and used to shape
our best practices. While our process will never be perfect, we are
encouraged with the improved speed and ease that our research
progresses now that we have: (1) made reproducibility a 1st class
citizen, (2) defined collaboration rules, and (3) made it a priority to
maintain pointers. We hope that our call-to-arms for community
cooperation effectively improves the state of reproducibility in the
field.

Our future work is to quantify the efficiency improvements or
degradations in efficiency due to reproducibility. An effective way
to quantify productivity, in addition to the time spent on a problem,
would help us more concretely identify when the reproducibility
approach is useful or not. It might also help us explore other envi-
ronments where reproducibility is useful, such as the classroom or
in conference settings. Finally, it would highlight situations where
the extra time spent setting up workflows and building paper arti-
facts is worth it for the ultimate payout of reproducibility when the
paper is published.

ACKNOWLEDGMENTS
We thank the P-RECS reviewers for their helpful comments and
suggestions. This work is supported by the Center for Research
in Open Source Software (cross.ucsc.edu) and the NSF, under the
award number 1450488.

REFERENCES
[1] Ivo Jimenez, Sina Hamedian, Michael Sevilla, Noah Watkins, Carlos Maltzahn,

KathrynMohror, Jay Lofstead, AndreaArpaci-Dusseau, and Remzi Arpaci-Dusseau.
2017. The Popper Experimentation Protocol. In Series of Webinars on Reproducible
Research. https://cross.ucsc.edu/wp-content/uploads/2017/09/jimenez.pdf

[2] Ivo Jimenez, Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. [n. d.].
The Popper Convention: Making Reproducible Systems Evaluation Practical. In
Proceedings of the International Parallel and Distributed Processing Symposium
Workshop (IPDPSW ’17).

[3] Michael A Sevilla, Ivo Jimenez, Noah Watkins, Shel Finkelstein, Jeff LeFevre,
Peter Alvaro, and Carlos Maltzahn. 2018. Cudele: An API and Framework for
Programmable Consistency and Durability in a Global Namespace. In Proceedings
of the 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS
’18).

[4] Michael A. Sevilla, Carlos Maltzahn, Peter Alvaro, Reza Nasirigerdeh, Bradley W.
Settlemyer, Danny Perez, David Rich, and Galen M. Shipman. 2018. Programmable
Caches with a Data Management Language and Policy Engine. In Proceedings of
the International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’18).

[5] Michael A. Sevilla, Reza Nasirigerdeh, Jeff LeFevre, Noah Watkins, Peter Alvaro,
Margaret Lawson, and Jay Lofstead. 2018. Tintenfisch: File System Namespace
Schemas And Generators. Technical Report UCSC-SOE-18-08. UC Santa Cruz.

[6] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein,
Jeff LeFevre, and Carlos Maltzahn. 2017. Malacology: A Programmable Storage
System. In Proceedings of the European Conference on Computer Systems (EuroSys
’17).

[7] Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, Ike Nassi, Scott A. Brandt,
Sage A. Weil, Greg Farnum, and Sam Fineberg. [n. d.]. Mantle: A Programmable
Metadata Load Balancer for the Ceph File System. In Proceedings of the Conference
on High Performance Computing, Networking, Storage and Analysis (SC ’15).

[8] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. [n. d.]. Ceph: A Scalable, High-Performance Distributed File System. In
Proceedings of the Symposium on Operating Systems Design and Implementation
(OSDI ’06).

https://cross.soe.ucsc.edu
https://cross.ucsc.edu/wp-content/uploads/2017/09/jimenez.pdf

	Abstract
	1 Introduction
	2 Popper-compliant Papers
	3 Popper Pitfalls
	3.1 Reproducibility is not a 1st Class Citizen
	3.2 Poorly-Defined Collaboration Roles
	3.3 Failure to Maintain Pointers

	4 Community Cooperation
	4.1 Conference Requirements
	4.2 Industry/Laboratory Requirements

	5 Conclusion
	References

