

Migrating Resources Improves Performance

Migrating resources is an important part of load balancing

► Depends on (1) system parameters and (2) migration overheads

Metadata management \rightarrow explore new migration heuristics

Popularity, not size, drives metadata distribution

CephFS \rightarrow prototyping platform for heuristics

Built for locality; migration tools are implemented

Metadata is different than data

Poor throughput scalability:

- highly accessed; synchronous; small writes
- proven techniques are insufficient

This problem, once reserved for HPC, is now in large data centers.

Why Use CephFS?

Ceph provides distributed storage

- data striped across a reliable object store (RADOS)
- data located with hash-based algorithm

CephFS: POSIX file system that uses RADOS

dynamic subtree partitioning

fragments write-intensive directories; replicates read-intensive content

Exploring Resource Migration Using the CephFS Metadata Cluster

Michael Sevilla*[†], Scott Brandt^{*}, Carlos Maltzahn^{*}, Ike Nassi^{*}, Sam Fineberg[†] *UC Santa Cruz

February 18, 2014

When/Where should I move this subtree? Simultaneous Requests

Eviction/Balancing must account for each MDS's resource utilization

Smarter Eviction & Balancing Heuristics

Construct Pareto Optimal Surfaces

performance counters & timing analysis

Resolve trade-offs with migration heuristics Identify viable heuristics with machine learning auto-correlation \rightarrow periodicity; decision trees \rightarrow predict performance

[†]HP Storage

across multiple MDS servers.

Hotspots can improve caching, if the CPUs can handle them

Conclusion

Load-balanced system $\not\rightarrow$ optimal system behavior

Identify which parameters to optimize

Optimizing for latency, throughput, resource utilization, wear-leveling, power, balanced heat dissipation, network traffic, client load... ... will produce different workload distributions!

References

- [1] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzelloni. Parallel I/O and the Metadata Wall. In Proceedings of the 6th Workshop on Parallel Data Storage, PDSW'11, 2011.
- [2] K. McKusick and S. Quinlan. GFS: Evolution on Fast-forward. Communications ACM, 53(3):42–49, Mar. 2010.
- [3] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File System Workloads.
- [4] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A Scalable, High-Performance Distributed File System. In Proceedings of the 7th USENIX Symposium on Operating Systems Design & Implementation, OSDI'06, 2006.
- [5] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic Metadata Management for Petabyte-Scale File Systems. In Proceedings of the 17th ACM/IEEE Conference on Supercomputing, SC'04, 2004.

Baskin Engineering

In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC '00, pages 4–4, 2000.