
Programmable Caches with a Data Management Language and Policy Engine

Michael A. Sevilla, Carlos Maltzahn, Peter Alvaro, Reza Nasirigerdeh,
*Bradley W. Settlemyer, *Danny Perez, *David Rich, *Galen M. Shipman

University of California, Santa Cruz, *Los Alamos National Laboratory
{msevilla, carlosm, palvaro, rnasirig}@ucsc.edu, {bws, danny perez, dor, gshipman}@lanl.gov

Abstract—Our analysis of the key-value activity generated by
the ParSplice molecular dynamics simulation demonstrates the
need for more complex cache management strategies. Baseline
measurements show clear key access patterns and hot spots
that offer significant opportunity for optimization. We use
the data management language and policy engine from the
Mantle system to dynamically explore a variety of techniques,
ranging from basic algorithms and heuristics to statistical
models, calculus, and machine learning. While Mantle was
originally designed for distributed file systems, we show how the
collection of abstractions effectively decomposes the problem
into manageable policies for a different application and storage
system. Our exploration of this space results in a dynamically
sized cache policy that does not sacrifice any performance
while using 32-66% less memory than the default ParSplice
configuration.

Keywords-high performance computing; cache storage; file
systems; system software

I. INTRODUCTION

Storage systems use software-based caches to improve
performance but the policies that guide what data to evict
and when to evict vary with the use case. For example,
caching file system metadata on clients and servers reduces
the number of remote procedure calls and improves the
performance of create-heavy workloads common in HPC [1],
[2]. But the policies for what data to evict and when to evict
are specific to the application’s behavior and the hardware
configuration so a new workload may prove to be a poor
match for the selected caching policy [2]–[6]. We evaluate
a variety of caching policies using our data management
language/policy engine and arrive at a customized policy
that works well for our example application, ParSplice [7].

ParSplice molecular dynamics simulations are representa-
tive of an important class of HPC applications with similar
working set behaviors that extensively use software-based
caches. ParSplice uses a hierarchy of caches and a single
persistent key-value store to store the atomic coordinates
corresponding to local energy minima (referred to simply as
minima) encountered by a large number of independent dy-
namical trajectories. This workload is also pervasive across
simulations that (1) rely on a mesh-based decomposition of
a physical region and (2) result in millions or billions of
mesh cells, where each cell contains materials, pressures,
temperatures and other characteristics that are required to
accurately simulate phenomena of interest. The fine-grained
data annotation capabilities provided by key-value storage

Figure 1: Using our data management language and policy engine,
we design a dynamically sized caching policy (thick line) for
ParSplice. Compared to existing configurations (thin lines with
×’s), our solution saves the most memory without sacrificing
performance and works for a variety of inputs. Solutions labeled
“no performance degradation” are in comparison to the baseline of
a cache of unlimited size.

is a natural match for these types of scientific simulations.
Unfortunately, simulations of this size saturate the capacity
and bandwidth capabilities of a single node so we need more
effective data management techniques.

A challenge for ParSplice is properly sizing the caches
in the storage hierarchy. The memory usage for a single
cache that stores atomic coordinates is shown in Figure 1,
where the thin solid lines marked with ×’s are the existing
configurations in ParSplice. The default configuration uses
an unlimited sized cache, shown by the “No Cache Man-
agement” line, but using this much memory for one cache
is unacceptable for HPC environments, where a common
goal is to keep memory for such data structures below 3%1.
Furthermore, ParSplice deploys a cache per 300 worker pro-
cesses, so large simulations need more caches and will use
even more memory. Users can configure ParSplice to evict
data when the cache reaches a threshold but this solution re-
quires tuning and parameter sweeps; the “Cache (too small)”
curve in Figure 1 shows how a poorly configured cache
can save memory but at the cost of performance, which
is shown by the text annotation to the right. Even worse,

1Anecdotally, this threshold works well for HPC applications. For
reference, a 1GB cache for a distributed file system is too large in LANL
deployments.



this threshold changes with different initial configurations
and cluster setups so tuning needs to be done for all system
permutations. Our dynamically sized cache, shown by the
thick line in Figure 1, detects key access patterns and re-
sizes the cache accordingly. Without tuning or parameter
sweeps, our solution saves more memory than a hand-tuned
cache without any performance degradation, works for a
variety of initial conditions, and could generalize to similar
applications. Triggering key eviction at a certain memory
pressure (e.g., 3%) requires a priori system knowledge while
our approach saves the most memory because we model the
behavior of keyspace accesses.

In this paper we are presenting the successful use of
our data management language and Mantle policy engine to
control the behavior of ParSplice’s caches. Mantle provides
a control plane that injects policies into a running storage
system, such as a file system or key-value store. While
Mantle was originally designed for file system metadata
load balancing [5], we find that it works surprisingly well
for specifying cache management policies without requiring
users to possess extensive knowledge about the internals of
storage systems. We show that our framework:

• decomposes cache management into independent poli-
cies that can be dynamically changed, making the
problem more manageable and easier to reason about.

• can deploy a variety of cache management strategies
ranging from basic algorithms and heuristics to statis-
tical models and machine learning.

• has useful primitives that, while designed for file
system metadata load balancing, turn out to also be
effective for cache management.

This last contribution is explored in Sections §IV and §V,
where we try a range of policies from different disciplines.
We analyze why our early policies fail for our HPC hardware
and software and show how we iterated to the final solution.
More importantly, in Section §VI, we conclude that the
collection of policies we design for cache management in
ParSplice are very similar to the policies used to load balance
metadata in the Ceph file system (CephFS [6]) suggesting
that there is potential for automatically adapting and gener-
ating policies dynamically. This paper does not thoroughly
study cache management policies for file systems, but our
findings for this specific application and related storage
systems work suggests that this approach is a strong avenue
for future work.

II. PARSPLICE KEYSPACE ANALYSIS

ParSplice [7] is an accelerated molecular dynamics (MD)
simulation package developed at LANL. It is part of the
Exascale Computing Project2 and is important to LANL’s
Materials for the Future initiative.

2https://www.exascaleproject.org/

Figure 2: ParSplice has a storage hierarchy of caches (boxes) and a
dedicated cache process (large box) backed by a persistent database
(DB). A splicer (S) tells workers (W) to generate segments.
Workers employ tasks (T) for parallelization. We focus on the
worker’s cache (circled), which facilitates segment exchange.

A. Background

As shown in Figure 2, the phases are:

1) a splicer tells workers to generate segments (short MD
trajectory) for specific states

2) workers read initial coordinates for their assigned
segment from data store; the key-value pair is (state
ID, coordinate)

3) upon completion, workers insert final coordinates for
each segment into data store, and wait for new segment
assignment

The computation can be parallelized by adding more
workers or by adding tasks to parallelize individual workers.
The workers are stateless and read initial coordinates from
the data store each time they begin generating segments.
Since worker tasks do not maintain their own history, they
can end up reading the same coordinates repeatedly. To
mitigate the consequences of these repeated reads, ParSplice
provisions a hierarchy of caches that sit in front of a single
persistent database. Values corresponding to new keys are
written to each tier and reads traverse up the hierarchy until
they find the data.

We use ParSplice to simulate the evolution of metallic
nanoparticles that grow from the vapor phase. This simu-
lation stresses the storage hierarchy more than other input
decks because it uses a cheap potential, has a small number
of atoms, and operates in a complex energy landscape with
many accessible states. As the run progresses, the energy
landscape of the system becomes more complex and more
states are visited. Two domain factors control the number of
entries in the data store: the growth rate and the temperature.
The growth rate controls how quickly new atoms are added
to the nanoparticle: fast growth rates lead to non-equilibrium
conditions, and hence increase the number of states that
can be visited. However, as the particle grows, the simu-
lation slows down because the calculations become more
expensive, limiting the rate at which new states are visited.
On the other hand, the temperature controls how easily a
trajectory can jump from state to state; higher temperatures
lead to more frequent transitions but temperatures that are



too high lead to the melting of the nanoparticle and hence
to a complete change in the physics of the system.

B. Experimental Setup

We instrumented ParSplice with performance counters
and keyspace counters. The performance counters track
ParSplice progress while keyspace counters track which keys
are being accessed by the ParSplice ranks. Because the
keyspace counters have high overhead we only turn them
on for the keyspace analysis.

All experiments ran on Trinitite, a Cray XC40 with 32
Intel Haswell 2.3GHz cores per node. Each node has 128GB
of RAM and our goal is to limit the size of the cache to
3% of RAM. Note that this is an addition to the 30GB
that ParSplice uses to manage other ranks on the same
node. The scalability experiment uses 1 splicer, 1 persistent
database, 1 cache process, and up to 2 workers. We scale
up to 1024 tasks, which spans 32 nodes and disable hyper-
threading because we experience unacceptable variability
in performance. For the rest of the experiments, we use
8 nodes, 1 splicer, 1 persistent database, 1 cache process,
1 worker, and up to 256 tasks. The keyspace analysis that
follows is for the cache on the worker node, which is circled
in Figure 2.

C. Results and Observations

Our analysis shows that ParSplice accesses keys in a
structured and predictable way. The following 4 observations
shape the policies we design later in the paper.

1) Scalability: Figure 3a shows the keyspace size (text
annotations) and request load (bars) after a one hour run
with a different number of tasks (x axis). While the keyspace
size and capacity is modest the memory usage scales linearly
with the number of tasks, which is a problem if we want
to scale to Trinitite’s 3000 cores. Furthermore, the size of
the keyspace also increases linearly with the length of the
run. Extrapolating these results puts an 8 hour run across
all 100 Trinitite nodes at 8GB for one cache. This memory
utilization easily eclipses the 3% memory usage per node
threshold we set earlier, even without factoring in the usage
from other workers.

2) An active but small keyspace: The bars in Figure 3a
show 50−100× as many reads (get()) as writes (put()).
Tasks read the same key for extended periods because the
trajectory gets stuck in so-called superbasins composed of
tightly connected sets of states. Writes only occur for the
final state of segments generated by tasks; their magnitude
is smaller than reads because the caches ignore redundant
write requests.

3) Initial conditions influence key activity: Figure 3b
shows how ParSplice tasks read key-value pairs from the
worker’s cache for two different initial conditions of ∆,
which is the rate that new atoms enter the simulation. The
line is the read request rate (y1 axis) and the dots along the

bottom are the number of unique keys accessed (y2 axis).
The access patterns for different growth rates have temporal
locality, as the reads per second for ∆2 look like the reads
per second for ∆1 stretched out along the time axis. The
∆1 growth rate adds atoms every 100K picoseconds while
the ∆2 growth rate adds atoms every 1 million picoseconds.
So ∆2 has a smaller growth rate resulting in hotter keys
and a smaller keyspace. Values smaller than ∆2’s growth
rate or a temperature of 400 degrees result in very little
database activity because state transitions take very long.
Similarly, growth rate values larger than ∆1 lead to far
out-of-equilibrium growth, while temperatures in excess of
800 degrees result in the melting of the nanoparticle, which
is not relevant in this application.

This figure demonstrates that small changes to ∆ can have
a strong effect on the timing and frequency with which new
minima are discovered and referenced. Trends also exist for
temperature and number of workers but are omitted here for
space. This finding suggests that we need a flexible policy
language and engine to explore these trade-offs.

4) Entropy increases over time: The reads per second in
Figure 3b show that the number of requests decreases and
the number of active keys increases over time. The number
of read and write requests are highest at the beginning of the
run when tasks generate segments for the same state, which
is computationally cheap (this motivates Section §IV). The
resulting key access imbalance for the two growth rates in
Figure 3b are shown in Figure 3c, where reads are plotted
for each unique state, or key, along the x axis. Keys are more
popular than others (up to 5×) because worker tasks start
generating states with different coordinates later in the run.
Figure 3c also shows that the number of reads changes with
different initial conditions (∆), but that the spatial locality
of key accesses is similar (e.g., some keys are still 5× more
popular than others).

III. METHODOLOGY

To explore software-defined cache management, we use
the data management language and policy engine presented
in [5]. The prototype in that paper, Mantle, was built on
CephFS and lets administrators control file system metadata
load balancing policies. We now refer to Mantle as a
policy engine that supports our data management language.
The basic premise is that data management policies can
be expressed with a simple API consisting of “when”,
“where”, and “how much”. The “when” policy controls
how aggressive or conservative the decisions are; “where”
controls how distributed or concentrated the data should be;
and “how much” controls the amount of data that should be
sent. There is also a “load” policy that lets administrators
specify how to collapse many metrics into a single load
metric (e.g., 2× cpu + 3× memory usage).

The succinctness of the API lets users inject multiple,
possibly dynamic, policies. In this work we focus on a



(a) Keyspace size and shape. (b) Key accesses over time. (c) Redundant key accesses.
Figure 3: Keyspace analysis for ParSplice. (a) shows that the keyspace is small but must satisfy many reads. Memory usage scales linearly,
so we will eventually need more than one node to manage segment coordinates for larger jobs. ∆1 is the growth rate (see Section §II-C3).
(b) shows that key accesses start with many reads to a small set of keys and progresses to less reads to a larger set of keys. The line shows
the rate that minima values are retrieved from the key-value store (y1 axis); points along the bottom show the unique keys accessed in
a 1 second window (y2 axis). Despite having different ∆s, the structure of key accesses are similar. (c) shows that over time, tasks start
accessing a larger set of keys resulting in some keys being more popular than others. Despite different ∆s, in both runs some keys are
5× more popular than others.

Figure 4: Extracting Mantle as library.

single node, so the “where” policy is not used. When we
move ParSplice to a distributed key-value store back-end,
the “where” policy will be used to determine which key-
value pairs should be moved to which node.

A. Extracting Mantle as a Library

We extracted Mantle as a library and Figure 4 shows how
it is linked into a storage system service. Administrators
write policies in Lua from whatever domain they choose
(e.g., statistics, machine learning, storage system) and the
policies are embedded into the runtime by Mantle. We
chose Lua for simplicity, performance, and portability; it
is a scripting language with simple syntax, which allows
administrators to focus on the policies themselves; it was
designed as an embeddable language, so it is lightweight
and does less type checking; and it interfaces nicely with
C/C++. When the storage system makes decisions it executes
the administrator-defined policies for when/where/how much
and returns a decision. To do this, the storage system needs
to be modified to (1) provide an environment of metrics and
(2) identify where policies are set. These modification points
are shown by the colored boxes in Figure 4 and described
below.

Metrics Data Structure Description
Cluster {server → {metric → val}} resource util. for servers

Time Series [(ts, val), ..., (ts, val)] accesses by timestamp (ts)

Storage System Example
Cluster File Systems CPU util., Inode reads

ParSplice CPU util., Cache size
Time Series File Systems Accesses to directory

ParSplice Accesses to key in DB

Table I: Types of metrics exposed by the storage system to the
policy engine using Mantle.

1) Environment of Metrics: storage systems expose clus-
ter metrics for describing resource utilizations and time
series metrics for describing accesses to some data structure
over time. Table I shows how these metrics are accessed
from the policies written by administrators.

For cluster metrics, the storage system passes a dictionary
to Mantle. Policies access the cluster metric values by
indexing into a Lua table using server and metric,
where server is a node identifier (e.g., MPI Rank, metadata
server name) and metric is a resource name. Metrics used
for file system metadata load balancing are shown by the
“environment” box in Figure 4. The measurements and
exchange of metrics between servers is done by the storage
system; Mantle in CephFS leverages metrics from other
servers collected using CephFS’s heartbeats. For example, a
policy written for an MPI-based storage system can access
the CPU utilization of the first rank in a communication
group using: servers[0][’cpu’].

For time series metrics, the storage system passes an
array of (timestamp, value) pairs to Mantle and the
policies can iterate over the values. The storage system uses
a pointer to the time series to facilitate time series with
many values, like accesses to a database or directory in
the file system namespace. This decision limits the time
series metrics to only include values from the current



node, although this is not a limitation of Mantle itself. For
example, a policy that uses accesses to a directory in a file
system as a metric for load collects that information using:

d = timeseries() -- d(ata) from storage system
for i=1,d:size() do -- iterate over timeseries
ts, value = d:get(i) -- index into timeseries
if value == ’mydirectory’ then

count = count + 1
end

end

2) Policies Written as Callbacks: the “callback” box in
Figure 4 shows an example policy for “when()”, where the
current server migrates work if it is has load and if its
neighbor does not have load; whoami is the current server,
its neighbor is whoami+1, and the load threshold is 0.1.
The load is calculated using the metrics provided by the
environment.

Mantle also provides functions for persisting state across
decisions. WRState(s) saves state s, which can be a
number or boolean value, and RDState() returns the state
saved by a previous iteration. For example, a “when” policy
can avoid trimming a cache or migrating data if it had
performed that operation in the previous decision.

B. Integrating Mantle into ParSplice

Using Mantle cluster metrics, we expose cache size, CPU
utilization, and memory pressure of the worker node to the
cache management policies. In Section §IV we only end up
using the cache size although the other metrics proved to be
valuable debugging tools. Using Mantle time series metrics,
we expose accesses to the cache as a list of timestamp,
key pairs. In Section §V, we explore a key access pattern
detection algorithm that uses this metric.

We link Mantle into all caches in the system and put
the “when” and “how much” callbacks alongside code that
checks for memory pressure. It is executed right before the
worker processes incoming and outgoing put/get transactions
to the cache. We only do cache management once every
second to avoid maintaining the cache for every request.
We expected to have to increase this polling interval to
accommodate more complex policies but even our most
complicated policy in Section §V had a negligible effect
on performance when executed every second (within the
standard deviation for multiple runs when compared against
a policy that returns immediately). This may be because the
worker is not overloaded and the bottleneck is somewhere
else in the system. As stated previously, we do not use the
“where” part of Mantle because we focus on a single node,
but this part of the API will be used when we move the
caches and storage nodes to a key-values store back-end
that uses key load balancing and repartitioning.

IV. CACHE MANAGEMENT USING STORAGE SYSTEM
ARCHITECTURE KNOWLEDGE

Using the Mantle policy engine, we test a variety of cache
management algorithms on the worker using the keyspace
analysis in Section §II-C. Our evaluation uses the total
“trajectory length” as the goodness metric. This value is the
duration of the overall trajectory produced by ParSplice. At
ideal efficiency, the trajectory length should increase with
the square root of the wall-clock time, since the wall-clock
cost of time-stepping the system by one simulation time unit
increases in proportion of the total number of atoms. The
policy should avoid reducing the trajectory length and be
fast enough to run as often as we want to detect key access
patterns. First we size the cache according to our system
specific knowledge, i.e. the hardware and software of the
storage hierarchy.

We implement an LRU cache using a “when” policy of:
server[whoami][’cachesize’]>n
and a “how much” policy of:
servers[whoami][’cachesize’]-n.

The results for different cache sizes for a growth rate
of ∆1 over a 2.5 hour run across 256 workers is shown
in Figure 5a. “Baseline” is the performance of unmodified
ParSplice measured in trajectory duration (y1 axis) and
utilization is measured with memory footprint of just the
cache (y2 axis). The middle graph labeled “Fixed Cache
Size” shares the y axes and shows the trade-off of using a
basic LRU-style cache of different sizes, where the penalty
for a cache miss is retrieving the data from the persistent
database. The error bars are the standard deviation of 3 runs.
Although the keyspace grows to 150K, a 100K key cache
achieves 99% of the performance. Decreasing the cache
degrades performance and predictability.

But the top graph in Figure 3b suggests that a smaller
cache size should suffice, as only 100 keys seem to be active
at any one time. It turns out that the unique keys plotted in
Figure 3b are per second and are not representative of the
actual active keyspace; the number of active keys is larger
than 100, as some keys may be accessed at time t0, not in t1,
and then again in t2. Because the cache is too small, reads
and writes fall through to the rest of the storage hierarchy
and the excessive traffic triggers a LevelDB compaction on
the persistent database. To avoid these compactions, which
temporarily block operations, we design a multi-policy cache
that switches between:

• unlimited growth policy: cache increases on every write
• n key limit policy: cache constrained to n keys
The key observation is that small caches incur too much

load on the persistent database at the beginning of the run
but should suffice after the initial read flash crowd passes
because the keyspace is far less active. We program Mantle
to trigger the policy switch at 100K keys to absorb the flash
crowd at the beginning of the run. Once triggered, keys are



(a) Policy with system knowledge (§IV). (b) Key accesses (application knowledge). (c) Policy with application knowledge (§V).

Figure 5: Cache management policies tested over the Mantle policy engine. (a) shows performance/utilization trade-offs of different cache
sizes (x axis). “None” is unmodified, “Fixed Sized Cache” evicts keys using LRU, and “Multi-Policy Cache” switches to a fixed sized
cache after absorbing the workload’s initial burstiness. “Multi-Policy Cache” with 1K keys is the best policy but only works for our
hardware/configurations. (b) shows key accesses for a 4 hour run. Detecting these groups of accesses leads to a more accurate cache
management strategy. (c) shows performance/utilization for the dynamically sized cache (DSCache) policy. DSCache adjusts to different
initial configurations (∆s) and saves 3× as much memory in the best case.

Figure 6: Memory utilization for “Default Policy” (unlimited cache
growth), “Multi-Policy” (absorbs initial burstiness of workload),
and “Dynamic Policy” (sizes cache according to key access
patterns). The dynamic policies save the most memory without
sacrificing performance.

evicted to bring the size of the cache down to the threshold.
The actual policy is shown and described in more detail
in Section §VI in Figure 8a. The plot on the right side of
Figure 5a shows the performance/utilization trade-off of the
multi-policy cache, where the cache sizes for the n key limit
policy are along the x axis. The performance and memory
utilization for a 100K key cache size is the same as the
100K bar in the “Fixed Cache Size” graph in Figure 5a
but the rest reduce the size of the keyspace after the read
flash crowd. We see the worst performance when the policy
switches to the 10 key limit policy, which achieves 94% of
the performance while only using 40KB of memory.

Caveats: The results in Figure 5a are slightly deceiving
for two reasons: (1) segments take longer to generate later in
the run and (2) the memory footprint is the value at the end
of 2.5 hours. For (1), the trajectory length vs. wall-clock
time curves down over time; as the nanoparticle grows it

takes longer to generate segments so by the time we reach 2
hours, over 90% of the trajectory is already generated. For
(2), the memory footprint rises until it reaches the 100K
key switch threshold at 0.4GB and then reduces to the final
value after switching policies. The memory usage over time
for this policy is shown by the “∆1, Multi-Policy” curve in
Figure 6 but in Figure 5a we plot the final value. Despite
these caveats, the result is still valid: we found a multi-
policy cache management strategy that absorbs the cost of
a high read throughput on a small keyspace and reduces
the memory pressure for a 2.5 hour run. To improve the
policy even more, we need a way to identify what thresholds
to use for different system setups (e.g., different ParSplice
parameters, number of worker tasks, and job lengths).

V. CACHE MANAGEMENT USING
APPLICATION-SPECIFIC KNOWLEDGE

Feeding application-specific knowledge about ParSplice
into a policy leads to a more accurate cache management
strategy. The goal of the following section is not to find an
optimal solution, as this can be done with parameter sweeps
for thresholds; rather, we try to find techniques that work
for a range of inputs and system setups.

Figure 5b shows which keys (y axis) are accessed by
tasks over time (x axis). The groups of accesses to a subset
of keys occurs because the system is stuck in so-called
superbasins, i.e. coarse regions of space from which it is
difficult to escape, but within which it is easy to move.
Systems stuck in superbasins will explore the same set of
minima for a long time, leading to the same keys being
accessed repeatedly. In Figure 5b, superbasins are typically
not re-visited because the simulation only adds atoms; we
can never revisit a superbasin that contains less atoms than
the simulation currently contains. This is why keys are never
re-accessed after a given amount of time.



1 d = timeseries()
2 ts, id = d:get(d:size())
3 fan = {start=nil, finish=ts, top=0, bot=id}
4 fans = {}
5 for i=d:size(),1,-1 do -- iterate backwards
6 ts, id = d:get(i)
7 if id < fan[’bot’] then -- found a new fan!
8 fan[’start’] = ts
9 fans[#fans+1] = fan

10 fan = {start=nil, finish=ts, top=0, bot=id}
11 end
12

13 if id > fan[’top’] then -- track top of fan
14 fan[’top’] = id
15 end
16 end
17 fan[’start’] = 0
18 fans[#fans+1] = fan
19

20 if #fans < 2 then -- do not evict current fan
21 return false
22 else
23 WRstate(fans[#fans-1][’top’]-fans[1][’bot’])
24 return true
25 end

Figure 7: The dynamically sized cache policy iterates backwards
over timestamp-key pairs and detects when accesses move on to
a new subset of keys (i.e. “fans”). The performance and total
memory usage is in Figure 5c and the memory usage over time
is in Figure 6.

Detecting these superbasins can lead to more effective
cache management strategies because the height of the
groups of key accesses is “how much” of the cache to evict
and the width of the groups of key accesses is “when”
to evict values from the cache. The zoomed portion of
Figure 5b shows how a single superbasin affects the key
accesses. Moving along the x axis shows that the number
of unique keys accessed over time grows while moving
along the y axis shows that early keys are accessed more
often. Despite these patterns, the following characteristics
of superbasins make them hard to detect:

• superbasin key accesses are random and there is no
threshold “minimum distance between key access” that
indicates we have moved on to a new superbasin

• superbasins change immediately
• the number of keys a superbasin accesses differs from

other superbasins

A. Failed Strategies

To detect the access patterns in Figure 5b, we try a
variety of techniques using Mantle. Unfortunately, we found
that the following techniques proliferate more parameters
that need to be tuned per hardware/software configuration.
Furthermore, many of the metrics do not signal a new set
of key accesses. Below, we indicate with quotes which
parameters we need to add for each technique and the value
we find to work best, via tuning and parameter sweeps, for
one set of initial conditions.

• Statistics: decay on each key counts down until 0; 0-

valued keys are evicted. “history-of-key-accesses”, set
to 10 seconds, to evict keys.

• Calculus: use derivative to strip away magnitudes; use
large positive slopes followed by large negative slope
as signal for new set of key accesses. “Zero-crossing”,
set to 40 seconds, for distance between small/large
spikes to avoid false positives; “window size”, set to
200 seconds, for the size of the moving average.

• K-Means Clustering fails because “K” is not known
a-priori and groups of key accesses are different size.
“K”, set to 4, for the number of clusters in the data
using the sum of the distances to the centroid.

• DBScan: finds clusters using density as a metric. “Eps”,
set to 20, for max distance between 2 samples in same
neighborhood; “Min”, set to 5, for the samples per core.

• Edge Detection: size of the image is too big and bottom
edges are not thick enough.

B. Dynamically Sized Cache: Access Pattern Detection

After trying these techniques we found that the basic
O(n) algorithm in Figure 7 works best. The algorithm
detects groups of key accesses, which we call “fans”, by
iterating backwards through the key access trace, finding
the lowest key ID, and comparing against the lowest key
ID we have seen so far (Line 7). We also maintain the top
and bottom of each group of key accesses (Line 13) so we
can tell the “how much” policy the number of keys to evict
(Line 23). The algorithm is O(n), where n is the number
events, but the benefit is that the approach avoids adding
new thresholds for key access pattern detection (e.g., space
between key accesses, space between key IDs, and window
size of consecutive key accesses).

The algorithm iterates backwards over the key access trace
because a change in the minimum value signals a new group
of key accesses. No signal exists iterating left to right, as the
maximum value always increases and the minimum values
at the bottom of each group of key accesses are sparse.
For example, the maximum distance between values along
the bottom edge of the zoomed group of key accesses in
Figure 5b is 125 seconds, while the maximum distance
between minimum values for the group of key accesses
before is 0 seconds. As a result of this sparseness, iterating
left to right requires a “window size” parameter to determine
when we think a minimum value will not show up again.

The performance and memory utilization is shown by
the “DSCache” bars in Figure 5c. Without sacrificing per-
formance (trajectory length), the dynamically sized cache
policy uses between 32%-66% less memory than the default
ParSplice configuration (no cache management) for the 3
initial conditions we test. The memory usage over time is
shown by the “Dynamic Policy” curves in Figure 6, where
the behavior resembles the key access patterns in Figure 5b.
The memory usage is not exactly the same because these are
two different runs; Figure 5b has key activity tracing turned



on, which reduces performance. We also show a ∆2 growth
rate to demonstrate the dynamic policy’s ability to adjust to
a different set of initial conditions.

VI. TOWARDS GENERAL DATA MANAGEMENT POLICIES

In the previous section, we used our data management
language and the Mantle policy engine to design effective
cache management strategies for a new application and
storage system. In this section, we compare and contrast the
policies examined for file system metadata load balancing
in [5] with the ones we designed and evaluated above for
cache management in ParSplice.

A. Using Load Balancing Policies for Cache Management

From a high-level the cache management policy we de-
signed in Figure 8a trims the cache if the cache reaches
a certain size and if it has already absorbed the initial
burstiness of the workload. Much of this implementation was
inspired by the CephFS metadata load balancing policy in
Figure 8b, which was presented in [5]. That policy migrates
file system metadata if the load is higher than the average
load in the cluster and the current server has been overloaded
for more than two iterations. The two policies have the
following in common:

Condition for “Overloaded” (Fig. 8a: Line 2; Fig. 8b:
Line 2) - these lines detect whether the node is overloaded
using the load calculated in the load callback (not shown).
While the calculations and thresholds are different, the way
the loads are used is exactly the same; the ParSplice policy
flags the node as overloaded if the cache reaches a certain
size while the CephFS policy compares the load to other
nodes in the system.

State Persisted Across Decisions (Fig. 8a: Lines 4,6;
Fig 8b: Lines 3,4,9) - these lines use Mantle to write/read
state from previous decisions. For ParSplice, we save a
boolean that indicates whether we have absorbed the work-
load’s initial burstiness. For CephFS, we save the number of
consecutive instances that the server has been overloaded.
We also clear the count (Line 9) if the server is no longer
overloaded.

Multi-Policy Strategy (Fig. 8a: Line 6; Fig. 8b: Line 5)
- after determining that the node is overloaded, these lines
add an additional condition before the policy enters a data
management state. ParSplice trims its cache once it eclipses
the “absorb” threshold while CephFS allows balancing when
overloaded for more than two iterations. The persistent state
is essential for both of these policy-switching conditions.

These similarities among effective policies for two very
different domains suggest that the heuristics and techniques
in other load balancers can be used for cache management.
The result supports the notion that concepts and problems
that architects grapple with are transcendent across domains
and the solutions they design can be re-used in different
code bases.

B. Using Cache Management Policies for Load Balancing

The cache management policies we developed earlier can
be used by load balancing policies to effectively spread
load across a cluster. For example, distributed file systems
that load balance file system metadata across a dedicated
metadata cluster could use the caching policies to determine
what metadata to move and when to move it. To demonstrate
this idea, we analyze a 3-day Lustre file system metadata
trace, collected at LANL. The trace is anonymized so all
file names are replaced with a unique identifier and we do
not know which applications are running. We visualize a 1
hour window of the trace in Figure 9, where the dots are
the file system metadata reads in a 1 hour window. The x
axis is time and the y axis is the file ID, listed in the order
that file IDs appear in the trace. The groups of accesses look
similar to the ParSplice key accesses in Figure 5b.

Although other access pattern detection algorithms are
possible, we use the one designed for cache management
in Section §V-B with slight modifications based on our
knowledge of file systems. We filtered out requests for key
IDs less than 2000, as these are most likely path traversal
requests to higher parts of the namespace. The vertical lines
in Figure 9 are the groups of accesses identified by the
algorithm; it successfully detects the largest group of key
accesses that starts at time 1000 seconds and ends at time
2200 seconds. File systems that load balance file system
metadata across a cluster would want to keep metadata in
that group of key accesses on the same server for locality
and would want to avoid migrating metadata to a different
server until the group of key accesses completes.

Before we showed how policies designed for load balanc-
ing heavily influence our cache management in a different
application and storage system. But in this section we show
how an unmodified cache management policy can be used
in a load balancing strategy. This generalization may reduce
the work that needs to be done for load balancing as ideas
may have already been explored in other domains and could
work “out-of-the-box”.

C. Other Use Cases

Storage systems have many other data management tech-
niques that would benefit from the caching policies devel-
oped in Sections §IV and §V. For example, Ceph adminis-
trators can use the policies in ParSplice to automatically
size and manage cache tiers, caching on object storage
devices, or in the distributed block device. Integration with
Mantle would be straightforward as it is merged into Ceph’s
mainline and the three caching subsystems mentioned above
already maintain key access traces.

More generally, the similarities between load balancing
and cache management show how the “when”/“where”/“how
much” abstractions, data management language, and policy
engine may be widely applicable to other data management
techniques, such as:



1 function when()
2 if server[whoami][’cachesize’] > n then
3 if server[whoami][’cachesize’] > 100K then
4 WRstate(1)
5 end
6 if RDstate() == 1 then
7 return true
8 end
9 end

10 return false
11 end

(a) ParSplice cache management policy that absorbs the burstiness
of the workload before switching to a constrained cache. The
performance/utilization for different n is in Figure 5a.

1 local function when()
2 if servers[whoami]["load"] > target then
3 overloaded = RDstate() + 1
4 WRstate(overloaded)
5 if overloaded > 2 then
6 return true
7 end
8 end
9 else then WRstate(0) end

10 return false
11 end

(b) CephFS file system metadata load balancer, designed in 2004
in [2], reimplemented in Lua in [5]. This policy has many simi-
larities to the ParSplice cache management policy.

Figure 8: ParSplice’s cache management policy has the same components as CephFS’s load balancing policy.

Figure 9: File system metadata reads for a Lustre trace collected
at LANL. The vertical lines are the results of running the pattern
detection algorithm used for cache management in Section §V. File
system use cases are in Section §VI-B.

QoS: when to move clients, where to move clients, how
much of the reservation to move. We could use Mantle to
implement something like the reservation algorithms based
on utilization and period in Fahrrad [8] to achieve better
guarantees without sacrificing performance.

Scheduling: when to yield computation cycles to another
process, how much of a resource to allocate. We could use
Mantle to implement the fairness/priority models used in the
Mesos [9] “how many” policies.

Batching: how many operations to group together, when
to send large batches of updates. We could use Mantle
to implement pathname leases from IndexFS [1] or the
capabilities from CephFS.

Prefetching: how much to prefetch, how to select data.
We could use Mantle to implement forward/backward/stride
detection algorithms for prefetching in RAID arrays or
something more complicated, like the time series algorithms
for adaptive I/O prefetching from [10].

VII. RELATED WORK

The analysis of the ParSplice keyspace and the develop-
ment of an appropriate scheme for load balancing is a direct
response to a case study for computation caching in scientific
applications [11]. In that work the authors motivated the
need for a flexible load balancing microservice to efficiently

scale a memoization microservice. Our work is also heavily
influenced by the Malacology project [12] which seeks to
provide fundamental services from within the storage system
(e.g., consensus) to the application. Our plan is to use
MDHIM [13] as our back-end key-value store because it
was designed for HPC and has the proper mechanisms for
migration already implemented.

State-of-the-art distributed file systems partition write-
heavy workloads and replicate read-heavy workloads, sim-
ilar to the approach we are advocating here. IndexFS [1]
partitions directories and clients write to different partitions
by grabbing leases and caching ancestor metadata for path
traversal. ShardFS [3] takes the replication approach to
the extreme by copying all directory state to all nodes.
CephFS [2], [6] employs both techniques to a lesser extent.
These systems still need to be tuned by hand with ad-
hoc policies designed for specific applications. For example,
IndexFS and CephFS partition directories at predefined
thresholds, which are difficult to define at the beginning of
the job. Mantle makes headway in this space by providing
a framework for exploring these policies, but does not
attempt anything more sophisticated (e.g., machine learning)
to create these policies.

Auto-tuning is a well-known technique used in HPC [14],
big data systems systems [15], and databases [16]. Like our
work, these systems focus on the physical design of the
storage (e.g. cache size) but since we focused on a relatively
small set of parameters (cache size, migration thresholds),
we did not need anything as sophisticated as the genetic
algorithm used in [14].

VIII. CONCLUSION

Data management encompasses a wide range of tech-
niques that vary by application and storage system. Yet, the
techniques require policies that shape the decision making
and finding the best policies is a difficult, multi-dimensional
problem. We iterate to a custom solution for our target
application that uses workload access patterns to size its
caches. Without tuning or parameter sweeps, our solution
saves memory without sacrificing performance for a variety



of initial conditions. More importantly, rather than attempt-
ing to construct a single, complex policy that works for a
variety of scenarios, we instead use the Mantle framework to
enable software-defined storage systems to flexibly change
policies as the workload changes. We also observe that many
of the primitives and strategies have enough in common
with data management in file systems that they both can
be expressed with similar semantics.

This lays the foundation for future work, where we will
focus on formalizing a collection of general data man-
agement policies that can be used across applications and
storage systems. This eases the burden of policy develop-
ment and paves the way for automated solutions such as
(1) adaptable policies that switch to new strategies when
the current strategy behaves poorly (e.g., thrashing), and
(2) policy generation, where new policies are constructed
by examining the collection of existing policies. We hope
that this automation enables control of policies by machines
instead of administrators.

ACKNOWLEDGMENT

This work is supported by the Center for Research in
Open Source Software and the U.S. Department of En-
ergy’s Office of Science, under contract number DE-AC52-
06NA25396 and DE-SC0016074, Advanced Scientific Com-
puting Research under award number DE-SC0015234, and
the National Nuclear Security Administration under award
number DE-NA0002373-1, by the Advanced Simulation and
Computing Program, Advanced Technology Development
and Mitigation element. The majority of the work in this
paper is supported by the Director, Office of Advanced
Scientific Computing Research, Office of Science, of the
United States Department of Energy, under the guidance of
Dr. Lucy Nowell. Danny Perez is supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capa-
ble exascale ecosystem, including software, applications,
hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing im-
perative. This document has been assigned the Los Alamos
National Laboratory identifier LA-UR-18-21419.

REFERENCES

[1] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS:
Scaling File System Metadata Performance with Stateless
Caching and Bulk Insertion,” in Proceedings of the Confer-
ence on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’14, 2014.

[2] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller,
“Dynamic Metadata Management for Petabyte-Scale File Sys-
tems,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’04.

[3] L. Xiao, K. Ren, Q. Zheng, and G. A. Gibson, “ShardFS vs.
IndexFS: Replication vs. Caching Strategies for Distributed
Metadata Management in Cloud Storage Systems,” in Pro-
ceedings of the Symposium on Cloud Computing, ser. SoCC
’15.

[4] S. A. Brandt, E. L. Miller, D. D. E. Long, and L. Xue,
“Efficient Metadata Management in Large Distributed Storage
Systems,” in Proceedings of the 20th IEEE/11th NASA God-
dard Conference on Mass Storage Systems and Technologies,
ser. MSST ’03, 2003.

[5] M. A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. A.
Brandt, S. A. Weil, G. Farnum, and S. Fineberg, “Mantle:
A Programmable Metadata Load Balancer for the Ceph
File System,” in Proceedings of the Conference on High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’15.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A Scalable, High-Performance
Distributed File System,” in Proceedings of the Symposium
on Operating Systems Design and Implementation, ser. OSDI
’06.

[7] D. Perez, E. D. Cubuk, A. Waterland, E. Kaxiras, and A. F.
Voter, “Long-Time Dynamics Through Parallel Trajectory
Splicing,” Journal of Chemical Theory and Computation.

[8] A. Povzner, D. Sawyer, and S. Brandt, “Horizon: efficient
deadline-driven disk I/O management for distributed storage
systems,” in Proceedings of the International Symposium on
High Performance Distributed Computing, ser. HPDC ’10.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A Plat-
form for Fine-grained Resource Sharing in the Data Center,”
in Proceedings of the Conference on Networked Systems
Design and Implementation, ser. NSDI ’11.

[10] N. Tran and D. A. Reed, “ARIMA Time Series Modeling and
Forecasting for Adaptive I/O Prefetching,” in Proceedings of
the Conference on High Performance Computing, Network-
ing, Storage and Analysis, ser. SC ’01.

[11] J. Jenkins, G. M. Shipman, J. Mohd-Yusof, K. Barros, P. H.
Carns, and R. B. Ross, “A Case Study in Computational
Caching Microservices for HPC,” in IPDPS Workshops, 2017.

[12] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkel-
stein, J. LeFevre, and C. Maltzahn, “Malacology: A Pro-
grammable Storage System,” in Proceedings of the European
Conference on Computer Systems, ser. EuroSys ’17, 2017.

[13] H. Greenberg, J. Bent, and G. Grider, “MDHIM: A Paral-
lel Key/Value Framework for HPC,” in Proceedings of the
Workshop on Hot Topics in Storage and File Systems, ser.
HotStorage ’15.

[14] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt,
Q. Koziol, M. Snir et al., “Taming Parallel I/O Complex-
ity with Auto-Tuning,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13.

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin,
and S. Babu, “Starfish: A Self-Tuning System for Big Data
Analytics,” in Proceedings of the Conference on Innovative
Data Systems Research, ser. CIDR ’11.

[16] K. Schnaitter, N. Polyzotis, and L. Getoor, “Index Interactions
in Physical Design Tuning: Modeling, Analysis, and Applica-
tions,” in Proceedings of the VLDB Endowment, ser. VLDB
’09.


	Introduction
	ParSplice Keyspace Analysis
	Background
	Experimental Setup
	Results and Observations
	Scalability
	An active but small keyspace
	Initial conditions influence key activity
	Entropy increases over time


	Methodology
	Extracting Mantle as a Library
	Environment of Metrics
	Policies Written as Callbacks

	Integrating Mantle into ParSplice

	Cache Management Using Storage System Architecture Knowledge
	Cache Management Using Application-Specific Knowledge
	Failed Strategies
	Dynamically Sized Cache: Access Pattern Detection

	Towards General Data Management Policies
	Using Load Balancing Policies for Cache Management
	Using Cache Management Policies for Load Balancing
	Other Use Cases

	Related Work
	Conclusion
	References

