
Enhancing the Resiliency of Cyber-Physical Systems with
Software-Defined Networks

Luis E. Salazar
UC Santa Cruz

luedsala@ucsc.edu

Alvaro A. Cardenas
UC Santa Cruz

alvaro.cardenas@ucsc.edu

ABSTRACT
Numerous research efforts have focused on intrusion detection in
industrial control networks, however, few of them discuss what to
do after an intrusion has been detected. Because the safety of most
of these control systems is time-sensitive, we need new research on
automatic incident response. In this paper, we extend our work on
leveraging Software-Defined Networking (SDN) to automatically
reconfigure an industrial control network to mitigate the impact of
attacks, and to deceive adversaries.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Net-
work security; Domain-specific security and privacy archi-
tectures; • Networks → Programmable networks; • Applied
computing → Industry and manufacturing.

KEYWORDS
Industrial Control Systems, Software-Defined Networks, Cyber-
Physical Systems

ACM Reference Format:
Luis E. Salazar and Alvaro A. Cardenas. 2019. Enhancing the Resiliency of
Cyber-Physical Systems with Software-Defined Networks. In ACM Work-
shop on Cyber-Physical Systems Security & Privacy (CPS-SPC’19), November
11, 2019, London, United Kingdom. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338499.3357356

1 INTRODUCTION
Industrial Control Systems (ICS) are responsible for operating vari-
ous safety-critical infrastructures, such as power grids, water man-
agement, oil systems, and manufacturing. Recent events, like the
blackout caused by the cyber-attack against the power-grid in
Ukraine [9], show the dire need for improving the security of ICS.

Cybersecurity is a process that consists of (1) protecting, (2) detect-
ing, and (3) responding to attacks [7]. Most of the literature on ICS
security has focused on preventing and detecting attacks [3]; how-
ever, responding to attacks has received much less attention [1, 3].
In particular, most of the research papers focusing on intrusion
detection for control systems do not discuss what to do after an
attack has been detected [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-SPC’19, November 11, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6831-5/19/11. . . $15.00
https://doi.org/10.1145/3338499.3357356

In this paper, we address this gap by continuing our work on
intrusion response mechanisms to keep the control system oper-
ating safely while sustaining attacks. In particular, we extend our
intrusion-response architecture that leverages Software-Defined
Networking (SDN) to automatically reconfigure our attacked-network
in real-time [12]. While our previous work focused on replacing
compromised sensor and control messages to trustworthy sources,
in this paper we focus on two new use-cases for network reconfig-
uration during an attack:

(1) We show how to create a honeypot of an industrial system
so the attacker is rerouted to this honeypot.

(2) We show and work around the challenges of creating a hon-
eypot when the attacker is already inside the industrial con-
trol network.

In addition to considering the new use-case of honeypots, this
paper improves our previous open-source implementation of our
ICS simulation, and the SDN response. In particular, we created
several byproducts that can be of use to other researchers in Cyber-
Physical Systems (CPS) security, and in general SDN security. Our
new open-source software contributions in this work include,

(1) Our new design places the IDS in a secure network, im-
plements a deep-packet inspection tool to extract the se-
mantics of the ICS from the packets in the network, and
improves the modularity of our design. The source code for
all our SDN defenses is open source and available online:
https://github.com/Cyphysecurity/ICS-SDN/tree/nids.

(2) We created a new Python API to interface with the ONOS
SDN controller programmatically. Our tool is available online
at https://github.com/Cyphysecurity/ICS-SDN/blob/nids/nids/pyonos.py.

(3) We also created aWeb interface to manage our SDN network
and our ICS emulation. Our new open-source tool is available
at https://github.com/Cyphysecurity/ICS-SDN/blob/nids/nids/sdnidswebui.
py.

The remainder of this paper is organized as follows: in Section 2
we discuss the background of our proposal and related work. As
our solution is heavily dependent on SDN, we present an overview
of this concept and the most relevant features that we use as part
of our solution in Section 3. We then present the environment we
developed for the ICS model to perform the tests in Section 4; in
particular, we discuss the general setting, threat model, detection
scheme, and design choices. We then propose the migration of an
attacker from an existing network to an ICS honeypot in Section 5.
Finally, we show the results of our solution in Section 6.

2 RELATEDWORK
Our work is related to three lines of research: (1) honeypots for
CPS, (2) SDN for managing security properties of a system, and (3)
the visibility of industrial attacks.

https://doi.org/10.1145/3338499.3357356
https://doi.org/10.1145/3338499.3357356
https://github.com/Cyphysecurity/ICS-SDN/tree/nids
https://github.com/Cyphysecurity/ICS-SDN/blob/nids/nids/pyonos.py
https://github.com/Cyphysecurity/ICS-SDN/blob/nids/nids/sdnidswebui.py
https://github.com/Cyphysecurity/ICS-SDN/blob/nids/nids/sdnidswebui.py

The application of honeypots in CPS is a growing area of re-
search. Irvene et al. present an example of a honeypot for a robotic
vehicle [8], where they fool an attacker into believing that a given
attack was successful by simulating unsafe actions within a honey-
pot environment of the protected robotic system. For ICS, Rubio
et al. [13] present, among other intrusion detection solutions, a
commercial use case of a honeypot solution developed for the ac-
quisition and analysis of information related to a threat or attack
against an ICS. Another relevant example developed under the Hon-
eynet project is Conpot1: a low interactive server-side ICS honeypot
which provides a range of common industrial control protocols.
While Conpot presents examples of industrial systems to attackers,
a sophisticated attacker can identify the honeypot by observing
that the system does not satisfy the traditional physical properties
of devices in a typical industrial setting. To further enhance the
realism of the simulated system, Litchfield et al. present HoneyPhy,
a honeypot that models the physics of the devices (e.g., delays) [10].

In addition to honeypots, our work is related to SDN applied to
CPS. Skowyra et al. [14] showed how a verifiably-safe SDN can be
implemented as part of a CPS. With the versatility of such networks,
new ideas emerge involving this concept of programmable networks
as part of a CPS and, more precisely, as part of an ICS. Antonioli et
al. developed MiniCPS, a research tool that leverages the flexibility
of SDN in order to present a framework with which any researcher
can simulate an entire ICS network corresponding to a physical
model of a known system [2]. In our previous efforts we extended
MiniCPS by implementing a Physics-Based Anomaly Detection
(PBAD) system [5] to identify attacks, and then implemented an
incident-response system that removed the compromised sensor
or controller from the network using SDN and then rerouted the
network traffic to either a virtual sensor to replace the compromised
sensor values, or a redundant controller to replace the compromised
device [12].

In this paper we extend our previous work [12] in several ways:
(1) first, we extend our IDS in a way that it receives network pack-
ets from a mirror port in order to acquire the data values (in our
previous implementation, the IDS obtained the values of the system
from a shared database used in the simulation of the process), (2) we
implement our system on an industry-supported (and state of the
art) SDN controller called ONOS2 (Previously we implemented our
system in an academic SDN controller called POX), (3) following
security best practices for operating an IDS, we move the IDS from
the same network being monitored to another segmented network
that cannot send packets to the network being monitored, (4) we
modularize our system to enable flexibility, and also higher fidelity
with real-world systems (our previous work was implemented all
within a single virtual machine, while in this paper we have three
different virtual machines, one running the SDN network and phys-
ical process, another the SDN controller, and another the IDS), (5)
we make all of our implementation and contributions open-source
and available online (as stated in the introduction), and (6) in this
paper we focus on the migration of an attacker from the real system,
to a honeypot (Previously, we focused on the implementation of
the IDS and the response to sensor attacks and controller attacks,

1http://conpot.org
2https://onosproject.org

but did not look at how to deceive the adversary and migrate them
seamlessly to a honeypot). Our work emphasizes the importance
of providing a seamless transition from the real system, to the hon-
eypot environment, so the attacker does not detect that it has been
transferred from the real target to a fake system.

Finally, inspired by the work of Giraldo et al. [6], we implement
the network packet captures at the field-layer of industrial networks
so our system can detect more attacks.

2.1 Scope of the document
As Rubio et al. mentioned [13], the development of an effective IDS
for ICS is still an open problem with different proposed solutions
and innovations. Different techniques and detection mechanisms
have been implemented throughout the years and new solutions are
being developed as the industry itself evolves. Our implemented IDS
is based on our previous work [12], and in this paper we consider
details of the IDS performance out of scope, as our goal is to design
solutions once an IDS has raised an alert.

Before we discuss in detail our system, we need some background
on software-defined networks.

3 SOFTWARE-DEFINED NETWORKS
In the traditional networking switch architecture, the assorted func-
tions that a device must fulfill are segregated into three main cate-
gories represented as layers or planes: management, control, and
data. Peer communications occur in the same plane, whereas cross-
category communications occur between planes. The most common
interactions between these categories are illustrated in figure 1.

Data plane
Forwarding table

Control plane

Management plane

Unknown packets

Control packets

Statistics, Status

Configuration

Program forwarding table

Policy

Centralized controller

Figure 1: The main idea behind SDN is to have the control
and management planes in a centralized controller.

The main idea behind SDN is to move all the software involving
the decision-making process off network switches, and into a cen-
tralized system with the capability of optimizing decisions based
on a complete overview of the managed network and not just a sin-
gle device. Ultimately, SDN leaves the forwarding responsibilities
to the device and centralizes the decision-making responsibilities
within a controller.

In most scenarios, the vast majority of packets handled by an
SDN switch involve the data plane, which takes care of packet
buffering, scheduling, and forwarding. If the header information
of any given packet is not recorded in the forwarding table, or the
received packet is a control packet, these packets are forwarded
to the control plane to obtain the corresponding table entry. The
remaining features involve the interaction between the switch and

http://conpot.org
https://onosproject.org

the administrator, which are handled by the management plane. In
short, the raw data to be forwarded by the device is handled by the
data plane, and the intelligence regarding the decision-making pro-
cess is carried out by the control plane, based on the configuration
made by the administrator in the management plane.

3.1 Southbound API
Since the decision-making process is being taken care of in a remote
controller, there has to be a mechanism with which the network
switches communicate with the controller. This communications
channel is known as the southbound API, which handles the mes-
sages exchanged between the controller and the SDN devices to
configure the network as a whole. The Open Networking Founda-
tion developed OpenFlow as its standard southbound API and is
supported by several manufacturers such as Cisco, Juniper, Huawei,
Brocade, IBM, Dell, and HP, among others.

In addition to developing OpenFlow, the Open Networking Foun-
dation published the OpenFlow switch specification [16], where
they describe the actual requirements that a logical SDN switch
must have to properly support OpenFlow as a southbound API. This
includes the support of OpenFlow as the communications protocol
between the switch and the controller, and the inclusion of the
main components of an OpenFlow-compliant Switch. The main
components of an OpenFlow logical switch can be summarized in
a set of flow tables, a group table, and a set of OpenFlow channels
with the controller.

By using OpenFlow as a southbound API, the controller can add,
delete, or update flow entries within the tables in a logical device,
both in a predefined manner or dynamically in response to a certain
conditions in the packets.

At a high level, a flow table can be described as a set of flow
entries. Each entry is comprised of match fields and a set of in-
structions or actions to carry out for each matching packet. This
matching is carried out in priority order, starting from the first
table within the switch and checking each subsequent table for a
matching entry, taking into account the actual priority of every
entry. If a matching entry is found, the instructions associated with
that entry are followed. If there is no matching entry, the switch
follows the instructions configured in the “table-miss” entry.

One important characteristic of a flow entry involves actions
to be carried out for every matching packet (e.g. output port =
x). However, the OpenFlow specification states that this action
set can only contain one action of each type. This means that if
the administrator wants to execute the same action type several
times with different parameters for the same matching packet, one
single entry is insufficient. This poses a problem since only the
first matching entry will be executed, excluding any further actions
contained in additional matching flow entries with lower priority.

To address this requirement, the OpenFlow specification defines
the group table, which is comprised of group entries. The main
idea behind group tables is depicted in figure 2. Every group entry
contains an ordered list of action buckets, where each action bucket
is essentially an action set of a regular flow entry. This allows an
administrator to execute multiple action sets for a single matching
packet. By stating a specific group as the action within the action
set of a flow entry, the matching packet will be processed with the

actions described in the action buckets of the corresponding group
entry.

output port = x
output port = y

...
group = c

...
output port = z

Flow table i identifier
type

counters
buckets

output port = x

output port = y

Group entry c

w
x
y
z

ports

Match

Incoming packet

Matches flow entry for
group c in table i

Figure 2: An example of a group table. An incoming packet
that matches the entry on the flow table i that has an action
set including the group cwill instruct the switch to find the c
entry within its group table and execute the actions defined
in the buckets of the group entry. This allows the execution
of multiple actions of the same type for a single matching
packet.

3.2 Northbound API
In addition to having switches communicating with the controller,
we need a way to let network applications reach the controller. The
main idea behind the northbound API is to provide a mechanism
with which an application can communicate with the controller
to manage the network. The rationale behind this idea is that an
applicationmight handle a different set of information regarding the
process implemented on top of a network that might not be directly
related to network packets (e.g., sensor data, business analytics,
market behavior, natural phenomena, etc.). With such information,
different network decisions might be more effective towards the
objective of the process, whatever it might be.

Due to the potential diversity of such applications, and the fact
that the applications themselves might not be implemented within
the controller, the latter must provide different mechanisms to fulfill
the same requirements. That is where the northbound API comes
into play.

Different controllers implement different types of northbound
APIs. However, most controllers show a trend on how the APIs are
implemented. For the most part, controllers implement at least two
different APIs that achieve the same goals. The main API provides
extensions written in the same programming language that the
controller is built upon (i.e., Python API, Java API, etc.).

A secondary API is usually implemented as well, and it provides
an external communications channel between an application and
the controller via some specific protocol. For this communications
channel, the northbound API is usually implemented by providing
a REST API.

Regardless of the actual implementation of the northbound API,
the goal is to provide a mechanism with which an application can
make some method calls to the API, allowing it to reconfigure the
SDN.

REST
API

Python
API

Java
API

Northbound
API

Controller

Application

IDS
BGP ERP

CRM

External context

Methods Events

Figure 3: Generic northbound API communication scheme
with an application.

3.3 SDN Controllers
There have been different types of SDN controllers for a variety of
purposes. The first SDN controller that supported OpenFlow was
NOX3, an initial attempt by Nicira Networks (acquired by VMware)
written in C++, which was later given to the community as an open-
source project. Since then, several controllers supporting OpenFlow
have spawned from this first attempt.

A direct successor fromNOX is POX4, an evolved Python version
of NOX, intended to be used for prototyping and fast development
of applications running within the controller. This was the SDN
controller we used in our previous work [12]. The downside of this
controller is its performance, a consequence of being developed in
Python.

An early alternative to POX was Beacon5, a Java-based SDN
controller supporting OpenFlow and threaded operation. However,
Beacon has not been in active development since its latest version,
released on September 2013.

3https://github.com/noxrepo/nox/
4https://github.com/noxrepo/pox
5https://openflow.stanford.edu/display/Beacon/Home

Originally forked from Beacon, Floodlight6 formed the basis for
commercial-grade SDN controllers. Its latest release was on March
2016, which indicates that it is not under active development.

Currently, the two most popular open-source SDN controllers
are OpenDaylight7 and ONOS8. The former is supported by the
Open-Source Foundation, while the latter is supported by the Open
Networking Foundation. While both controllers are Java-based and
provide several desirable features, the fact that ONOS is being main-
tained by the same organization that defines the OpenFlow standard
specifications guarantees seamless compatibility with the protocol.
This difference can be appreciated within the performance varia-
tions between the two controllers. While both controllers are com-
parable, ONOS has been proven to out-perform OpenDaylight[15].
For these reasons we decide to implement our solution in ONOS.

3.4 Our use-case
We need to implement a way to give the IDS a copy of all packets in
the field network of an ICS, and in additionwe need to implement an
incident-response application that can control (via the northbound
API) the behavior of the ICS network.

Since the concept of grouping allows the packets to be sent
throughmultiple ports of a switch, by placing an SDN device strictly
to redirect all the traffic to a single passive interface in the monitor,
group entries are then defined in order to acquire a copy of each
packet sent through each port of each device within the SDN to-
wards the IDS, effectively obtaining an entire copy of the network
packets within the protected system.

Now that the IDS has an entire copy of the traffic, we can design
the incident-response application. By using the northbound API,
this incident-response application can alter the flow tables of the
system, as needed, to protect it against a detected threat.

4 SYSTEM MODEL AND DESIGN
CONSIDERATIONS

Our ICS is comprised of three main components: a physical process,
a field network (a network between field devices and controllers),
and a supervisory network (a network between controllers and
SCADA systems) as seen in Figure 4. A secure architecture for
ICS [11] suggests that these components should be placed in layers,
so that ideally, an element within a certain layer can only commu-
nicate with elements of the adjacent layers when necessary. Other
interactions between layers are possible but usually discouraged.

Since we are implementing a new SDN element within the ICS,
this element must be placed accordingly. We conceive this element
as the management component of all the network requirements of
both the field network and the supervisory network. As such, it
must interact, if needed, with SDN elements within these networks.

However, due to security concerns, and the actual role this el-
ement is going to be exerting over the scenario, direct communi-
cation between the components involved in the actual physical
process and the SDN control network is not desired. Therefore,

6http://www.projectfloodlight.org
7https://www.opendaylight.org/
8https://onosproject.org/

https://github.com/noxrepo/nox/
https://github.com/noxrepo/pox
https://openflow.stanford.edu/display/Beacon/Home
http://www.projectfloodlight.org
https://www.opendaylight.org/
https://onosproject.org/

we take into consideration this constraint, and thus the SDN con-
trol network is placed in a new layer above both the field and the
supervisory networks within the ICS architecture.

Field network (SDN)

Supervisory network
SDN control network

Physical process

MV101

Tank 101

0.0

LIT101

P101

SDN switch

PLC101

Router

SCADA Supervisor SCADA Historian

SDN Controller

MV201

0.0

PH201

SDN switch

PLC201

0.0

LIT301

Tank 301

P301

PLC301

Control loop 1 Control loop 2 Control loop 3

SDN switch

OpenFlow

Figure 4: Our ICS has three PLCs, two tanks, two level sen-
sors, one pressure sensor, and two flow actuators as well as
two pump actuators.

Figure 4 depicts the scenario to be used as a general testbed
for our IDS scheme, which extends our previous efforts on using
SDN for incident response for ICS [12]. In this scenario, a physical
process representing a water purification plant is simulated, and
the process is then controlled by three different PLCs. The com-
munications of all devices in the network is done with an SDN
emulator.

4.1 Threat model
We assume the attacker has compromised a device in the field net-
work. We assume that this compromise could have been achieved
either externally or internally (Figure 5). The manner by which the
attacker acquired access to the communications channel, and the
privileges required to gain such access, are out of the scope of this
document. It is assumed that s/he already executed such actions
and gained the necessary privileges.

This attacker has the ability to communicate with the devices
inside each control loop either directly or through some routing.
Regardless of how it is established, the attacker has a communica-
tions channel between the attacker’s location in the network and
the target devices.

4.2 Proposed improvements over our previous
work

This paper extends our previous work where we implemented an
IDS on top of miniCPS [2] and then showed how to reconfigure the
field network to survive sensor and controller attacks [12].
Improving the IDS: Our previous IDS was implemented by ex-
tending the functionalities of the existing Programmable Logic
Controller (PLC) elements within miniCPS. The PLC components
store all the variables of the physical process it simulates within

0.0

Control Loop

0.0

Control Loop

0.0

Control Loop

Field network

(1)

(2)

Figure 5: The threat model includes two different types of
attacker. The first attacker contemplated by the model is an
external attacker that gains access to the field network (1).
The second one is an attacker located directly within the
field network (2).

a local database. By extending this component, the IDS had direct
access to the variables of each control loop stored within the local
database. This previous implementation is depicted in figure 6a.

PLC IDS

0.0

Sensor Valve Pump

Local database

(a) Previous scenario.

PLC IDS

0.0

Sensor Valve Pump

Local database

(b) Compromised scenario.

Figure 6: Previous IDS schemewithin a control loop. The IDS
is another component in the field network implemented as
an extension of the PLC component. Both the PLC and the
IDS can access the stored values in the local database.

However, if the field network itself is compromised as depicted
in figure 6b, an attacker might have access to the IDS, and it may
be compromised as well, defeating its purpose. To prevent such a
scenario, we propose to remove the IDS from the field network. If
the IDS is placed within a completely external, separate, machine
outside the simulated environment, not only can this scheme pre-
vent an attacker from gaining control of these security devices from
within the field network, but also it will no longer be restricted to
the simulated scenario, allowing it to be configured for a production
environment. If the IDS is implemented externally, a single IDS can
be used to oversee the entire process, not just a single control loop.
Furthermore, if implemented correctly, an attacker within the field
network should not even notice the existence of the IDS.

Figure 7 depicts our new design for an external IDS. The main
idea behind this scheme is to obtain a copy of all the network traffic

flowing within the field network and sending that traffic to an
external IDS. This system is implemented within the same SDN
control network, as it must communicate with the controller to
dynamically alter the SDN as a result of an alert.

SDN field network

SDN Controller

Mirror

IDS

ICS Network traffic

Northbound API

Figure 7: Intrusion detection scheme using mirrored traffic
acquired fromall theOpenFlowdevicesmanaged by the con-
troller. Upon detection, the IDS reacts to a set of defined at-
tacks by sendingnorthboundAPI commands to the SDNcon-
troller in order to prevent further attacks.

By using an external IDS, it can not only detect anomalous be-
havior of the physical process itself, but it can also analyze the
network traffic with traditional network IDS to identify known
malicious techniques being launched from inside the field network.
Moreover, any commands sent from the IDS to the SDN controller
would not be accessible from within the field network, preventing
the attacker from realizing any counter-measures taken by the IDS.

As for the data capture, some related work has already addressed
some of the challenges that involve the usage of an IDS with
SDN [17]. Despite the many benefits that the SDN provides, the
segregation of the control and data planes makes it difficult to per-
form an inspection of the full packets circulating within an SDN.
As a possible solution, Yoon et al. [17] present a conceptual design
in which the application layer that handles the northbound API of
a controller acquires the traffic from the SDN network through a
separate NIC in an in-line fashion. However, they do mention the
possible performance issues this might pose for the SDN as a whole.
They also provide some insights regarding the implementation with
passive-modes, in which additional network interfaces between
the control and data planes are required to collect the full payload,
which cannot be acquired via the control channel.

For our purposes, we consider that a passive-mode implemen-
tation is adequate for the intended solution. Not only does this
implementation allows the inspection of the packets, but it also
avoids affecting the overall performance of the SDN controller.
Therefore, our scheme uses a passive-mode IDS in a separate ma-
chine, communicating with the SDN controller via the controller’s
northbound API.
Improving the SDN Controller: Regarding the SDN controller,
our previous efforts used POX as the SDN controller, as it was

already included with Mininet. Based upon the overall performance,
compatibility, features, current development, and maintenance of
the actual SDN controller, we consider that a reasonable candidate
for the actual implementation of the SDN controller is ONOS, an
open-source project that strives to provide a commercial-grade
product ready to be deployed in production environments [15].
Improving the Modularity of Our Design: Based on the ideas
discussed in this section, our scheme revolves around three main
roles: the SDN network itself, the SDN controller and the IDS. Since
the SDN network in a production environment is implemented with
actual hardware that supports OpenFlow, the simulated environ-
ment must behave in the same way. Therefore, we consider that
the obvious implementation of the SDN simulation must be in an
independent machine from the actual SDN controller.

Our previous architecture [12] is illustrated in figure 8, and
our design and implementation of the proposed improvements
are shown in figure 9. The chosen SDN framework was Mininet9,
which simulated all the required devices within the SDN network,
providing a reasonable simulation of a production environment.

Virtual machine

Mininet

SDN Controller (POX)

Control loop 1

PLC 1
IDS 1

Sensor 1
Pump 1

Valve 1

Control loop 2

PLC 2
IDS 2

Sensor 2
Pump 2

Valve 2

Control loop 3

PLC 3
IDS 3

Sensor 3
Pump 3

Valve 3

Figure 8: Previous lab environment. All the components
were implemented in a single virtual machine running
Mininet with POX as the SDN controller, and MiniCPS as
the framework to simulate the ICS components.

The main idea of our defense mechanism is to improve the previ-
ous efforts by taking advantage of the SDN controller to execute the
necessary actions to relocate an attacker detected within the field
network into a honeypot network. This honeypot network must
contain simulated replicas of the physical devices implemented
in each control loop, creating the illusion of an actual working
ICS with all its inner workings and communications between the
components.

To implement the honeypot, the same miniCPS framework will
be used, as it already provides a reasonable functionality to sim-
ulate an ICS. The focus of our work involves the actual usage of
SDN technology rather than the simulation of the devices them-
selves. We point out that the previous efforts already tackled the
simulation of the process, which includes the implementation of
all the EtherNet/IP stack as the communications protocol for the
simulated ICS.

9Mininet creates a realistic virtual network, running real kernel, switch and application
code, on a single machine: http://mininet.org/

http://mininet.org/

4.3 SDN control network
As was discussed in section 4.2, our solution requires the segrega-
tion of the SDN framework, the SDN controller and the IDS. Due
to this segregation of roles, there must be a control network estab-
lished between these components as a communications channel.
This channel allows the controller to communicate with both the
simulated OpenFlow devices and the IDS.

Virtual machine 1: SDN field network

eth0

eth1Mininet (Open vSwitch)

Control loop 1 SPAN

Control loop 2 SPAN

Control loop 3 SPAN

Honeypot loop 1 SPAN

Honeypot loop 2 SPAN

Honeypot loop 3 SPAN

M
ir
ro
r

vS
w
it
ch

O
U
T

Virtual machine 2: SDN Controller

eth0

SDN controller (ONOS)

Virtual machine 3: IDS

Custom ICS-IDS

Log watcher

Sniffer component

Northbound
API client

Traditional NIDS
(Snort, Bro, Suricata, etc.)

eth0

eth1

Hypervisor network 1:
SDN Control network

Hypervisor network 2:
SDN mirror network

Figure 9: The lab environment is comprised of three differ-
ent roles. One virtualmachine handles the simulation of the
physical processes, the honeypot and the actual SDN hard-
ware that would be implemented in the field network (Sec-
tion 4.4). Anothermachine implements the chosen SDN con-
troller –ONOS– (Section 4.5). The last machine implements
the custom IDS (Section 4.6).

As ONOS publishes both the OpenFlow and northbound API
services in the same network interface, this is the actual control
network that will be used to establish the communications channel
between the three roles. Furthermore, in every OpenFlow device,
this control network is effectively isolated from the actual SDN and
is merely used as a communications channel between the device
itself and the SDN controller. If the IDS is placed within this same
network, not only will it still be unreachable from within the SDN,
but also it will have the ability to freely communicate with the
controller as well.

To implement our improved scheme, a set of three virtual ma-
chines are interconnected as depicted in figure 9, one for each
required role. The scenario makes use of a hypervisor to run three
separate virtual machines, each one fulfilling a specific role in the
scenario. We take advantage of the hypervisor’s networking ca-
pabilities to establish the communications channels between the
different roles in the improved scheme. Since we need to have a
control network and also sniff the SDN network traffic, we follow
the conceptual design of Yoon et al. [17] and add another network
interface for this purpose between the SDN field network and the
IDS.

4.4 ICS simulation VM
The first virtual machine runs both Mininet and MiniCPS. This
machine is in charge of simulating the field networks needed to

represent the actual physical process to be defended. This includes
both the industrial control devices as well as the SDN OpenFlow
devices. In addition to the devices simulated in the previous scheme,
our solution replicates the entire scenario to provide the honeypot,
a replica of the physical process. In a production environment,
this machine would only simulate the honeypot, and the physical
process would be included in the SDN scheme with actual hardware
devices that support OpenFlow.

To be able to extract the traffic from the SDN devices, an addi-
tional SDN device is placed within Mininet. This device has a link
to every other OpenFlow device in the network. By manipulating
flow and group tables, the network traffic from each control and
honeypot loop is mirrored into this new device. The entire traffic
received by this device is then redirected towards a particular port
in the device that is linked to a network interface in the virtual
machine, effectively sending all the traffic captured from the SDN
network into the virtual machine’s network interface. This network
traffic will be then sniffed by the IDS.

4.5 SDN Controller VM
The next virtual machine handles the SDN controller role. In this
machine, ONOS has been installed and configured in such a way
that both Mininet and the IDS can communicate with it. The former
to establish the communication between the simulated OpenFlow
devices and the controller. The latter to send instructions to the con-
troller via the northbound API. These communications are received
via the SDN control network.

4.6 IDS VM
The last virtual machine implements the IDS role as a whole. As
the scope of our current efforts is not in the attack itself, but rather
in how to leverage SDN features once an alert is raised, we assume
that the detection of an attacker has already been implemented
and we merely use this detection mechanism as part of the new
implementation. Following the same implementation practices of
our previous efforts, our custom-made IDS role is also implemented
using Python.

As the intrusion detection schemes from our previous efforts
depend on the actual values of the process, these values are now
acquired directly from the sniffed network packets rather than
from the local database. This is because the new IDS is an external
entity, independent from the actual network that is being defended.
Therefore, any data acquisition must be done directly from the
sniffed payloads. This is taken care of by a sniffer component within
the custom IDS, based on Scapy10.

Any decisions regarding the SDN itself as a result of the detection
mechanisms of the sniffer component are handled by a northbound
API client component included in the custom IDS. To the best of our
knowledge, there is no official Python module to directly interact
with ONOS, which presented a challenge for including ONOS in our
solution. However, ONOS does provide a northbound REST API as
a generic northbound API. Because of this, we developed ‘pyonos’,
a Python module that can communicate with the northbound REST

10Scapy is a Python program that enables the user to send, sniff, dissect and forge
network packets. This capability allows the construction of tools that can probe, scan
or attack networks. https://scapy.readthedocs.io/en/latest/

https://scapy.readthedocs.io/en/latest/

Figure 10: The IDS web UI. It allows rudimentary management of the custom IDS and the relevant SDN devices via the con-
troller’s northbound API.

API provided by ONOS to manage the SDN devices. Using this new
module the custom IDS can manage the SDN network, allowing
the dynamic manipulation of the flow tables of the field network
devices.

A final component of the custom IDS is the log watcher. This
feature was conceived in the design of the custom IDS but has not
yet been implemented. The idea behind the log watcher is to have a
traditional IDS such as Snort inspect the sniffed traffic for traditional
IT malicious traffic. The log watcher component of the custom IDS
should be able to read the alerts generated by the traditional IDS,
and new decisions can be based on these alerts. The inclusion of
this traditional IDS is left for future work.

Throughout the implementation of our solution, we noticed
an increasing complexity regarding the management of the SDN
infrastructure. Therefore, we started the development of a simple
web interface to interact with the IDS. The web interface allows the
management of the SDN devices, SDN group manipulation, basic
flow table management, simple role assignment of the detected
endpoints and the display of some statistics regarding the sniffed
packets within the last minutes (figure 10).

5 RELOCATING THE ATTACKER TO THE
HONEYPOT

We are now ready to implement our honeypot relocation use-case.
There are four components to the defense scheme as a whole: the
SDN controller (ONOS), the field and honeypot networks (Mininet

and MiniCPS), and the IDS. ONOS will control the networking
itself, managing the interactions between the field network and
the honeypot, as well as the mirroring scheme used to deliver the
network traffic to the IDS. The latter, in turn, will receive the raw
network packets from both the field and honeypot networks to
make the appropriate security decisions, which are then translated
to REST API commands that are sent to the controller as needed
(figure 11).

The primary idea behind this defense scheme is that neither
the field nor the honeypot networks are aware that there is an
IDS monitoring the network traffic. In other words, there is no
communication between the devices inside either network and
the IDS. Nonetheless, the IDS does inspect all the traffic flowing
throughout both networks in search of the anomalous behavior
implemented in previous solutions.

In addition to these external components, we need to commu-
nicate both the field and honeypot networks whenever needed.
However, this communication has to be restricted to specific cases
in which the field devices might be in jeopardy. In other words,
there has to be a bridge between both networks that should only
allow traffic to flow upon specific requests by the IDS. Under reg-
ular circumstances, this bridge should effectively insulate both
networks.

While probably the most intuitive manner of implementing this
bridge would be to establish a link between each pair of SDN
switches in each control loop between the field network and the

ONOS Controller

Field network

Mirror

Honeypot network

Mirror

Bridge

flowsflo
ws

flow
s

IDS

raw
packets ra

w
pa
ck
ets

REST API

Figure 11: Fundamental interactions between the compo-
nents of the defense scheme.

honeypot, this approach could depend on the router to forward
traffic between different control loops within the honeypot. This
would mean that the router itself must have knowledge of the hon-
eypot when the whole idea behind the honeypot is for it to be
invisible from the actual network. Therefore, having a centralized
bridge between the field network and the honeypot facilitates the
communication between any control loop in the field network and
the honeypot as needed, without depending on the router. Every
routing decision can be defined via flow table entries as needed,
while ordinary communications between these networks can be
restricted by default, making the networks invisible to each other.

Whenever an attacker is identified and isolated inside the field
network, the IDS takes actions to effectively relocate the attacker
within the honeypot. We send the appropriate instructions to ONOS
from the IDS via the REST API. These instructions include the
flow table entries that allow the SDN switches to reroute all the
traffic incoming from the attacker through the bridge and into the
honeypot, as well as the corresponding replies from the fake devices
within the honeypot back to the attacker (figure 12).

6 PERFORMANCE TESTS
Since this scheme is meant to be a seamless transition between
the real network and the honeypot network, it is paramount that
attackers do not realize that they have been moved to the honey-
pot network. This means that not only the real scenario must be
replicated, but the behavior of the network must be maintained.

To accomplish a seamless transition, the traffic sent by the at-
tacker must be redirected to the honeypot in such a way that the
activities performed by the attacker appear to be continuous.

We performed two main tests in the scenario depicted in figure
13. The first one involves a custom UDP service. We chose a UDP
service because we need to measure the response time of the traffic
itself while transitioning between the two networks. Moreover, a
connection-oriented service could change the outcome of the test
due to possible re-connection times. Therefore, a service which
does not require the establishment of a connection will indicate the
actual response times of the network as a whole. This means that

Corporate

Control loop 1 0.0

Control loop 2 0.0

Control loop 3 0.0

Field network

Honeypot loop 10.0

Honeypot loop 20.0

Honeypot loop 30.0

Honeypot network

Mirror

m
ir
ro
r l
in
ks

Bridge “inactive links”

Figure 12: Under normal circumstances, flow tables in the
bridge switch prevent any traffic from flowing between the
field network and the honeypot, hence the name “inactive”
links. Upon detection of an attacker, flow tables are modi-
fied as necessary to reroute all the traffic involving the at-
tacker into the honeypot.

any delays in the communication will be the result of the different
updates in the SDN devices along the paths.

The custom UDP service is a simple service that replies 8 bytes
of data to any arriving packet, the 8 bytes are just a timestamp
coded in a long integer. Whenever the client sends a packet, it
records its local timestamp and calculates the difference between
the timestamp it sends and the timestamp of the client by the time
it receives the response. Note that the difference is only calculated
with the local timestamp. The remote timestamp is only used as a
payload for the packet and is only meant to add a standard-sized
payload to the traffic between the client and service. This difference
in time will be the round-trip time (RTT) of the service, which is
the time it takes to send a packet, be “processed” by the service,
and receive a response.

While the test is being performed, we configure a set of flow
table rules in the SDN controller, forcing the traffic that is being
sent by the client (the “attacker”) to be redirected to the honeypot
network. Since all the packets will have the wrong Ethernet frames,
the attacker will be forced to request the “new” MAC address of
the service to continue using the service. Furthermore, the SDN
devices that have just updated their flow tables will completely
add the rules whenever corresponding traffic is matched against
every new rule. In the meantime, the attacker experiences a timeout
in the communication, as the packets do not reach the intended
destination (figure 13).

The result of this redirection, as seen by the SDN controller, is
depicted in figure 14. All the traffic generated by the host with
IP address 192.168.1.100 located in the field network on the right

SDN Bridge Switch SDN Switch 1

SDN Switch 2SDN Mirror Switch

SDN Honeypot 1

SDN Honeypot 2

IDS

Client
“attacker”

Real
service

Honey service

3

1

2

Figure 13: Performance test scenario. Two machines will be
running the same service both in the field and honeypot
networks. An “attacker” located in the field network will
initially exchange data with the real service (1). Upon the
execution of the relocation mechanism, the traffic will be
redirected to the honeypot service (2). The attacker then ex-
changes data with the honeypot service (3). Throughout the
whole process, the attacker logs the RTT of each packet sent
to the service, unaware of the service’s location.

is being sent to the honeypot network on the left. In this partic-
ular case, the host is contacting the service published by the IP
address 192.168.1.10, which is exposed in both hosts that share that
IP address in the field and honeypot networks, making a seamless
transition possible. The remaining hosts in both networks are com-
municating with each other within the boundaries of each network.

The collected results of a sample execution are shown in figure 15.
For each packet sent, the attacker logs the RTT of that particular
packet with the current timestamp. This data can depict the behav-
ior of the SDN network while transporting the data between two
hosts. The gap highlighted in grey represents the downtime experi-
enced due to the relocation of the attacker from the field network
to the honeypot via flow tables. As with any other regular traffic in
an SDN, the first packet of a new connection has a larger RTT than
the rest of the traffic associated with a particular communications
channel between two hosts.

To estimate the behavior of the SDN to such relocation, this test
was performed 100 times. Each time, the attacker logged the RTT
of every sent packet and either the time it took to get a response
or a timeout of 1 second. Each execution was performed in the
following manner: the attacker sent data for 15 seconds, then the
relocation took place, and finally, an additional 15 seconds of data
transmission took place. The idea is to have a standard 30-second
uptime for the payloads to reach the “intended” destination. In the
field network, the intended destination would be the real service;
in the honeypot, the fake service.

Since the main challenge of the relocation is to avoid the detec-
tion of the honeypot by the attacker, the relocation timeout (i.e.,
the time it takes to receive a response after the relocation is issued
in the controller) is a variable that must be considered as part of the
performance of the protection scheme, this delay in the communi-
cation must be small enough to avoid any concerns by the attacker.
Figure 16 presents the measured downtime on every execution of
the test. The delay experienced by the client service appears to
have a random component to it. The changes in the delay revolve

around 25 seconds, which means that this is the amount of time
the attacker is expected to have a service outage.

To fix this issue, we look at the origin of this delay, which is
due to the way the flow entries are generated. At this point, the
flow entries match the attacker’s address and as an instruction, the
entries have an OUTPUT action towards the port connected to
the bridge between the field network and the honeypot network.
While this effectively redirects all the traffic involving the attacker
towards the honeypot, there is an issue with the MAC addresses.
All the traffic that the attacker is sending is intended for the original
device and, while the honeypot device has the same IP address, the
MAC address of the emulated device is different from the original
one.

A naive solution would be to simulate the honeypot devices
with the same MAC addresses. However, as the internal indexing
of hosts within the SDN controller is based on MAC addresses, this
would be counter-productive as legitimate traffic would be sent to
the honeypot and innocuous traffic from the honeypot would be
sent to the field network, ultimately affecting the physical process.

To solve this issue, we added new flow entries in the honeypot
switches. The idea behind these new flow entries is that they al-
low us to modify the packets in order to change the destination
MAC addresses to the corresponding addresses of the honeypot
device whenever a packet is meant for each particular device; the
same thing must be done for the opposite direction, every packet
originating from the simulated device must be altered in order to
change the source MAC address to that of the original device. By
doing so, the requests meant for the service will be redirected to the
honeypot service and the responses will be correctly routed to the
attacker. After implementing these changes, figure 17 shows the
RTT of a sample execution under these conditions. By changing the
MAC addresses, the response time greatly improved to the point
that, at most, a single packet is lost.

7 CONCLUSIONS
In this paper, we present a way to create a honeypot network of an
ICS in which an identified attacker can be dynamically relocated by
leveraging the inherent properties of SDN. By stealthily acquiring
a copy of all the traffic flowing throughout the field network, an
IDS that implements a northbound API client can reconfigure the
SDN as needed to isolate and fool the attacker, while avoiding any
direct contact with the affected network.

We show that if the transition is handled carefully and takes
into account all the relevant network layers, the relocation of an
attacker can not only be seamless but also very difficult to detect,
as the behavior of the network from the perspective of the attacker
is the same both in the field and the honeypot networks, and the
packet loss during the relocation is avoided when the appropriate
rules are used.

Finally, we show that an effective defense can be implemented
covertly by handling all the defense traffic within a separate SDN
control network, isolated from the field and corporate networks,
while still receiving the traffic from the field network over specific
interfaces instantiated within the SDN devices.

Our contributions are the direct result of the extension of our
previous work [12], resulting in a refined IDS scheme that leverages

Figure 14: An execution of the test as seen by the SDN controller. Two isolated networks are linked exclusively by switches
that only relay traffic as directed by the IDS. The traffic between the attacker (192.168.1.100) and a victim device (192.168.1.10)
is redirected from the real network (right side) to the honeypot (left side).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

16:26:05 16:26:10 16:26:15 16:26:20 16:26:25 16:26:30 16:26:35 16:26:40 16:26:45 16:26:50 16:26:55

Time

Sa
m
pl
e
ex
ec
ut
io
n
RT

T
[u
s]

Figure 15: An execution of the test. The collected data rep-
resents the round trip time between the “attacker” and the
“victim”host, inmicroseconds. The gap represents the down-
time generated by the relocation of the “attacker” into the
honeypot.

SDN with a commercial-grade controller and an ICS simulation
framework as a honeypot that can isolate a detected attacker within
a secure environment, protecting the field network. The byproducts
of these results include the management web UI and the Python
module to communicate with the SDN controller ONOS via a REST
API.

7.1 Future work
As the current implementation was solely developed for a specific
ICS scenario, future work includes the improvement of the modular
qualities of the IDS scheme to be extensible for different scenarios.
Furthermore, the current implementation of the Python interface

0

10

20

30

40

50

60

0 20 40 60 80 100

Execution

Re
lo
ca
tio

n
tim

eo
ut

[s
]

Figure 16: Downtimemeasured on each one of the 100 execu-
tions of the test. Every sample represents the time between
the relocation of the attacker from the field network to the
honeypot, and the reception of the first response from the
honeypot, in seconds.

with the northbound API is strictly limited to the particular fea-
tures we required for the current scenario, in the future, additional
features can be implemented to provide a complete northbound
client.

ACKNOWLEDGMENTS
This work is based on research sponsored by the U.S. Department of
Commerce, National Institute of Standards and Technology (NIST)
award 70NANB17H282N, the National Science Foundation through
CMMI-1925524, CNS-1929406, CNS-1929410, and CNS-1931573,
and the Air Force Research Laboratory under agreement number
FA8750-19-2-0010. The U.S. Government is authorized to reproduce

0

200

400

600

800

1000

1200

1400

1600

18:14:50 18:14:55 18:15:00 18:15:05 18:15:10 18:15:15

Time

Sa
m
pl
e
ex
ec
ut
io
n
RT

T
[u
s]

Figure 17: Another execution of the test after the MAC ad-
dress issue was resolved. The collected data represents the
round trip time between the “attacker” and the “victim”
host, in microseconds. The downtime was reduced to a sin-
gle lost packet between the client and the fake service at
18:15:00.6, a great improvement when compared to the ini-
tial behaviour depicted in figure 15.

and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

REFERENCES
[1] Cristina Alcaraz and Sherali Zeadally. 2015. Critical infrastructure protection:

requirements and challenges for the 21st century. International journal of critical
infrastructure protection 8 (2015), 53–66.

[2] Daniele Antonioli and Nils Ole Tippenhauer. 2015. MiniCPS. In Proceedings
of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy -
CPS-SPC ’15. ACM Press, New York, New York, USA, 91–100. https://doi.org/10.
1145/2808705.2808715

[3] Jairo Giraldo, Esha Sarkar, Alvaro A. Cardenas, Michail Maniatakos, and Murat
Kantarcioglu. 2017. Security and Privacy in Cyber-Physical Systems: A Survey
of Surveys. IEEE Design & Test 34, 4 (aug 2017), 7–17. https://doi.org/10.1109/
MDAT.2017.2709310

[4] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.

A Survey of Physics-Based Attack Detection in Cyber-Physical Systems. Comput.
Surveys 51, 4 (jul 2018), 1–36. https://doi.org/10.1145/3203245

[5] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.
A survey of physics-based attack detection in cyber-physical systems. ACM
Computing Surveys (CSUR) 51, 4 (2018), 76.

[6] Jairo Giraldo, David Urbina, Alvaro A. Cardenas, and Nils Ole Tippenhauer. 2019.
Hide and Seek: An Architecture for Improving Attack-Visibility in Industrial Control
Systems. Springer, Cham, Cham, Switzerland, 175–195. https://doi.org/10.1007/
978-3-030-21568-2_9

[7] White House. 2016. Federal Cybersecurity Research and Development Strategic
Plan. (2016).

[8] Celine Irvene, David Formby, Samuel Litchfield, and Raheem Beyah. 2018. Hon-
eyBot: A honeypot for robotic systems. Proc. IEEE 106, 1 (jan 2018), 61–70.
https://doi.org/10.1109/JPROC.2017.2748421

[9] Robert M Lee, Michael J Assante, and Tim Conway. 2016. Analysis of the Cyber
Attack on the Ukrainian Power Grid. Technical Report. SANS Industrial Control
Systems.

[10] Samuel Litchfield, David Formby, Jonathan Rogers, Sakis Meliopoulos, and Ra-
heem Beyah. 2016. Rethinking the Honeypot for Cyber-Physical Systems. IEEE
Internet Computing 20, 5 (sep 2016), 9–17. https://doi.org/10.1109/MIC.2016.103

[11] Luciana Obregon and Barbara Filkins. 2015. Secure Architecture for Indus-
trial Control Systems Secure Architecture for Industrial Control Systems Secure
Architecture for Industrial Control Systems 2. Technical Report. SANS Insti-
tute. https://www.sans.org/reading-room/whitepapers/ICS/secure-architecture-
industrial-control-systems-36327

[12] Andrés F. Murillo Piedrahita, Vikram Gaur, Jairo Giraldo, Alvaro A. Cardenas,
and Sandra Julieta Rueda. 2018. Virtual incident response functions in control
systems. Computer Networks 135 (apr 2018), 147–159. https://doi.org/10.1016/J.
COMNET.2018.01.040

[13] Juan Enrique Rubio, Cristina Alcaraz, Rodrigo Roman, and Javier Lopez. 2017.
Analysis of Intrusion Detection Systems in Industrial Ecosystems. In Proceedings
of the 14th International Joint Conference on e-Business and Telecommunications,
Vol. 4. SCITEPRESS - Science and Technology Publications, Madrid, Spain, 116–
128. https://doi.org/10.5220/0006426301160128

[14] Richard William Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury. 2013.
Verifiably-safe software-defined networks for CPS. In Proceedings of the 2nd ACM
international conference on High confidence networked systems - HiCoNS ’13. ACM
Press, New York, New York, USA, 101. https://doi.org/10.1145/2461446.2461461

[15] Alexandru L Stancu, Simona Halunga, Alexandru Vulpe, George Suciu, Octavian
Fratu, and Eduard C Popovici. 2015. A comparison between several Software
Defined Networking controllers. In 2015 12th International Conference on Telecom-
munications in Modern Satellite, Cable and Broadcasting Services, TELSIKS 2015.
IEEE, Nis, Serbia, 223–226. https://doi.org/10.1109/TELSKS.2015.7357774

[16] The Open Networking Foundation. 2015. OpenFlow Switch Specification Version
1.5.1 (Protocol version 0x06). (2015). http://www.opennetworking.org

[17] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin,
and Zonghua Zhang. 2015. Enabling security functions with SDN: A feasibility
study. Computer Networks 85 (jul 2015), 19–35. https://doi.org/10.1016/j.comnet.
2015.05.005

https://doi.org/10.1145/2808705.2808715
https://doi.org/10.1145/2808705.2808715
https://doi.org/10.1109/MDAT.2017.2709310
https://doi.org/10.1109/MDAT.2017.2709310
https://doi.org/10.1145/3203245
https://doi.org/10.1007/978-3-030-21568-2_9
https://doi.org/10.1007/978-3-030-21568-2_9
https://doi.org/10.1109/JPROC.2017.2748421
https://doi.org/10.1109/MIC.2016.103
https://www.sans.org/reading-room/whitepapers/ICS/secure-architecture-industrial-control-systems-36327
https://www.sans.org/reading-room/whitepapers/ICS/secure-architecture-industrial-control-systems-36327
https://doi.org/10.1016/J.COMNET.2018.01.040
https://doi.org/10.1016/J.COMNET.2018.01.040
https://doi.org/10.5220/0006426301160128
https://doi.org/10.1145/2461446.2461461
https://doi.org/10.1109/TELSKS.2015.7357774
http://www.opennetworking.org
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1016/j.comnet.2015.05.005

	Abstract
	1 Introduction
	2 Related work
	2.1 Scope of the document

	3 Software-Defined Networks
	3.1 Southbound API
	3.2 Northbound API
	3.3 SDN Controllers
	3.4 Our use-case

	4 System Model and Design Considerations
	4.1 Threat model
	4.2 Proposed improvements over our previous work
	4.3 SDN control network
	4.4 ICS simulation VM
	4.5 SDN Controller VM
	4.6 IDS VM

	5 Relocating the attacker to the honeypot
	6 Performance tests
	7 Conclusions
	7.1 Future work

	Acknowledgments
	References

