
Procedural Character Generation for Narrative Games
Larry LeBron
UC Santa Cruz

1156 High St. Santa Cruz, CA

llebron@soe.ucsc.edu

ABSTRACT

In this paper, I discuss general challenges associated
with authoring characters for interactive narrative
games. I then highlight some significant issues in this
area, including challenges associated with authorship
and improvised character development. Continuing, I
propose one avenue for addressing these issues:
procedural character-structure generation. I then outline
the Personage prototype system which I created as a
first step in demonstrating a potential solution to these
concerns. I conclude by discussing Personage's merits
and limitations, along with potential for future
development.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: Games

General Terms
Algorithms, Human Factors, Theory

Keywords
Narrative, Story, Characters, Procedural Content
Generation, Games

1. INTRODUCTION

This section presents some background on the role of
characters in narrative games, along with some key
challenges faced in their development. It then introduces
the procedural character generation technology I
developed to address this issue.

Nearly all narrative games rely heavily on characters and
character development to convey their story. Interaction
with such characters serves as a crux of gameplay in a
variety of genres, including tabletop role playing games,
social board games and digital story games. Game
characters fall into two general categories, NPCs and
PCs, non-player-characters and player-characters, which
I will now discuss.

1.1 Authoring Non-Player-Characters
(NPCs)

Non-player-characters are controlled by the system, or
game master, allowing for different levels of interaction.
The deepest NPCs typically feature hand-authored
backstories and personas. These characters are designed
to develop and arc along with their character abilities.
They are core to the development of the game story,
which requires them to allow for extensive player
interaction. These NPCs are therefore very labor
intensive to create, which leads most developers to
include only a limited number.

Unfortunately, story worlds tend to feel empty and
lifeless when inhabited by only a few characters. This
has lead some developers to embrace the idea of a
largely devoid worlds, such as those found in Myst[1]
and Shadow of the Colossus[2]. This solution is not
widely applicable, and many story game creators flesh
out their worlds with shallower NPCs.

In table-top games, these shallow NPCs may be used as
window dressing or simple plot-point deliverers.
Imagine a classic inn scenario in Dungeons and
Dragons[3].When the players enter the inn's pub, the
Game Master might describe the setting, along with
expanded, pre-authored descriptions for an inn-keeper,
bartender, and a mysterious stranger. (S)he might add in
that the bar is occupied by a collection of local rabble.
The Game Master might have extensive personas
developed for the highlighted characters, but what
happens if a player approaches one of those rabble?

The Game Master might wave the player off with a
canned line like “The drunk stares into space completely
oblivious to you.” On the other hand, the Game Master
might try to improvise that character, allowing the player
to interact as much as s(he) desires.

mailto:llebron@soe.ucsc.edu

This type of improvisation is difficult, and only gifted
storytellers are able to handle this type of situation
without disrupting player immersion. The best
storytellers are able to seamlessly weave the new NPC
into the story, perhaps even fleshing them out into a fully
realized persona, with abilities and a backstory to match.
At the same time, the players might never even interact
with the barkeep, for whom the Game Master had pre-
authored a rich story and ability set.

This issue is even more challenging to address in digital
games. While a human Game Master can improvise a
character based on prior knowledge and life experience,
a computer has no such intuitive talent. This leads most
game developers to laboriously pre-author both core and
ancillary NPCs.

Additionally, digital developers must work within a
limited system resource budget. In light of this,
developers typically restrict the variety and interaction
ability present in ancillary NPCs; prioritizing those
essential to story progression.

The simplest of these shallow digital characters will
merely navigate the space, seemingly unaware of the
player's actions. In some cases, they will also perform
simple, pre-scripted actions such as rote interactions and
behaviors.

More complex systems will imbue these NPCs with
limited agency, allowing them to pursue autonomous
actions based on limited mental models. Regardless,
these types of NPCs will seldom support a deep model
for interaction. As all content associated with these
characters is hand-authored, developers will also likely
wish to reuse it. Therefore, the player may encounter
models and behaviors which are repeated numerous
times.

In the end, players who come up agains an interaction
barrier will experience a lack of agency and immersion.
A player who wishes to learn more about that street-
sweeper or to go out adventuring with a random
messenger is just out of luck, which may lead him/her to
question the believability of the game world.

1.2 Authoring Player Characters (PCs)

As the name suggests, player characters are those
directly controlled by human gamers. In narrative
games, these characters also have stories and abilities. In
digital and non-digital games, these characters will
either be created by the player, the developer or the
Game Master. Regardless, someone is faced with the
issue of character authoring before being able to play the
game.

Additionally, this strictly pre-authored approach may
limit the depth of the created character's backstory. After
all, a developer probably won't require a player to write
their character's biography in order to begin playing. If
there is information that a player cannot learn about
his/her character, the player may end up feeling
disconnected in their role-play.

Imagine a scenario in which a PC is created with a high
level of magical ability. The player might desire an
explanation for this skill-set. As before, the developers
or Game Master will be faced with either prohibiting or
improvising this unpredicted interaction.

1.3 Hand-Authoring and Replayability

In both the case of PCs and NPCs, strictly pre-authored
characters also limit the variability of the experience on
replay. If a game's main focus is on pre-authored
characters, then this key part of the game experience will
play out the same every time. Developers can take this
into account by authoring a wider selection of
characters, but that may be prohibitively labor intensive.
In the end, this lack of variability may cause players to
limit their time with a game to a single playthrough.

1.4 Problems With Character Authoring

In examining these cases, some common problems
appear.

 Pre-authoring characters is a challenging, time
consuming task.

 In games with increased player freedom, there is
a chance that pre-authored character content
will not be experienced.

 Hand-authored character content provides less
variability and replayability.

 Pre-authored character interactions cannot allow
for maximal player agency.

 Player interaction with pre-authored or shallow
characters requires improvised character
authoring.

1.5 Is Procedural Character Generation
the Answer?

The procedural character generator described in this
paper was developed as a first step towards addressing
these issues. This generator is able to dynamically create

text descriptions of characters with a simulated life story,
as well as abilities and values that correspond with their
life experience. In developing this technology, I sought
to answer these specific questions in the realm of
character generation:

1. Can procedural character generation create
interesting characters?

2. Can procedural character generation ease the burden
of authoring characters?

3. Can procedural character generation allow for
“improvised” characters in digital games?

2. RELATED WORK

In this section, I will discuss some significant research in
procedural character generation. I should mention that a
good deal of work has been dedicated to procedurally
generating character models, animations and other
related art assets. These are certainly important
components of the larger research problem at hand, but,
as they are mainly graphical problems, remain out of
scope for this discussion.

Instead, I will be focusing on work relevant to the
generation of underlying interactive character
representations, which includes character backstories,
traits and abilities. Moving forward, I will refer to this as
character structure, in an effort to separate it from other
bordering research areas. I will then discuss how the
system I developed addresses a previously uncovered
area in this field.

In his 2007 thesis work, Jeff Lininger created a system
for character backstory generation, examining whether
“simulations of actors with differing traits and needs can
create a unique and seemingly logical series of events
that players interpret as authentic back-stories.”[4] Each
of his simulated characters has needs, such as hunger
and comfort, which they must satisfy by undertaking
various activities. Additionally, his characters have
personality traits which influence their activity selection.

This simulation system runs at the initialization of an
interactive murder mystery scenario, culminating in the
murder of one of the characters. The player is then able
to interact with the environment and the living
characters, while collecting clues that were generated by
the scenario. Although the simulated character
representations themselves are relatively shallow, this
work succeeds in procedurally generating interactive
characters. One of the main shortcomings of the research
was that players were unable to uncover some of the
underlying motivations for simulated character actions,

as they were only informed through vague, narrative text
descriptions.

Another interesting work in this domain is Chen et. al.'s
system, Role Model, which generates story's organized
around explicit, formal models of character roles [5].
Their system allows authors to specify story goals by
asserting abductive logic constraints, and their research
focuses on the story variations that can emerge from
such a specification. Their character models are far more
complicated than Lininger's, and include roles, traits,
and sentiments towards actions along with action models
which build off of causal properties and constraints.

Role Model produces believable story output based on
causal logic, but the described system was a relatively
incomplete prototype. At time of publish, it allowed only
three character roles, and produced only static,
categorical output that would be difficult to implement
in an interactive story setting. Nevertheless, it shows
promise as a novel approach in the area of constraint-
based character generation.

Mei et. al.'s work on the Thespian system focuses on
managing story characters in interactive drama[6]. Their
system uses autonomous agents to control characters by
determining character goals based on a starting goal
script. Additionally, the system encodes the character's
“personality” into their agent goals. Although the system
does rely on a pre-authored script, it is flexible enough
to allow for drama that diverges from this plan.

In these points of deviation, Thespian's agents ensure
that their managed characters stay true to their initial
motivations. This is largely possible because Thespian
was constructed on top of Psych-Sim, a deep
autonomous-agent management system, developed by
Marsell et. al. [7]. This underlying structure allows
Thespian to focus on drama management and character
integrity, without needing to model all of the
autonomous agent behavior.

In their evaluation, Mei et. al. admit that this system still
requires hand authoring. Nevertheless, they believe that
the system alleviates the burden of the authoring process
by allowing for higher level declarations Authors
implementing thespian can generate compelling
characters by encoding their story goals alone, instead of
having to specify all of the possible inter-character
interactions. Thanks to its deep underlying Psych-Sim
architecture, Thespian characters will be able to adapt to
different dramatic situations while maintaining an
internal consistency.

Yet another relevant work in this area is Cavazza et. al.'s
research in interactive, character-based storytelling[8].
They focused on applying Hierarchical Task Network
(HTN) planning to govern character behavior

management in interactive storytelling. Their system
requires pre-encoded character plans, and then simulates
variable, interactive drama situations as the managed
characters attempt to satisfy their goals. The system does
support player interaction, but it is limited to simple
interactions with items from a disembodied role. The
player is not able to control his/her own character in the
story.

Cavazza et. al.'s system successfully demonstrates an
architecture model which enables compelling and
variable virtual character performances. Other
researchers have also made progress in this vein of
character behavior management, including McCoy et. al.
in their work on Comme il Faut, an architecture for
social interaction simulation[9]. While these systems do
allow for robust character generation, they still require
some degree a significant degree of character pre-
authoring.

Taking a different angle on dynamic character
management, Sullivan et. al.'s Mismanor focuses
directly on deepening PC-NPC interactions in digital
role playing games[10]. Obviously, even if a NPC is
richly developed, a player can only enjoy this content if
is discoverable. Typically, the player can learn about
such NPC characters through an in-game interaction
system.

Their research attempts to expand the emergent
possibilities in these digital interactions, by building off
of the aforementioned Comme il Faut(CiF) system.
Whereas CiF was constructed to allow the player to
simulate interactions between any two characters,
Mismanor puts the player in the role of an individual
character.

By utilizing CiF, Mismanor enables a richer type of
social interaction with NPCs, allowing the player to
experience a more dynamic, two-way conversation than
is found in most digital role-paying-games. This system
additionally allows for player-character creation, which
results in a PC that the system can reason about in the
same way it reasons about its NPCs. Although this still
requires some pre-authorship of NPC and PC social
models, it does provide a useful model for dynamic,
playable interaction between such characters.

A final piece of relevant work, which serves as a guiding
piece for research in this area, is Riedl and Young's
Objective Character Believability Evaluation Procedure
for Multi-Agent Story Generation Systems[11]. In their
work, Riedl and Young present a procedure for
objectively evaluating characters in generated stories.
Specifically, their work focuses on character
intentionality, which they posit is a core aspect of
character believability. As they describe it, “Character

intentionality addresses the relationship of actions and
behaviors to an agent’s beliefs, desires, and intentions as
well as internal and external motivation.”

Their model uses the pre-existing QUEST system to
evaluate believability of characters present in generated
stories. QUEST is a human-validated model of human
question-answering, which allowed Riedl and Young to
effectively determine whether generated stories matched
their stated character believability requirements. Their
implementation of this evaluation system then allowed
them to prune a set of generated stories, presenting only
those which passed the believability metric.

In a controlled experiment, readers rated stories that
were selected by their system favorably, demonstrating
the effectiveness of their model. Their work therefore
specifies a valid approach to evaluating the quality of
generated characters. Their model is currently restricted
to evaluating character intentionality, which is only one
aspect of character believability. Therefore, further
expansion will be necessary to provide a complete
solution to determining character believability.
Additionally, their model is limited to static generated
story output. Therefore, the system would likely need to
be modified to evaluate characters in real-time
interactive work.

As is evident, much of the focus in this area has been on
managing dramatic, autonomous characters. This is
obviously incredibly valuable research, as developing
rich interactive characters is only worthwhile if players
can experience their depths. This work in autonomous
character management and dynamic interaction is
therefore crucial for addressing the larger issue of
creating immersive, interactive story worlds.

Of the work I examined, only a small portion focused on
the specific generation of characters stories and traits,
and, most of the generated characters were used in non-
interactive pieces. This creates a clear opening for a
system which can generate general-purpose characters
for use in interactive narrative games.

In my research, I was unable to find any work that
focused specifically on generalized character structure
generation for interactive games. I was, therefore,
inspired to make a prototype attempt at addressing this
need. The rest of this paper will discuss the system I
created in response.

3. THE PERSONAGE SYSTEM

In this section, I will present the architecture underlying
my procedural character structure generation system,
which I call Personage. For this prototype development,

I decided to focus on generating general character-
structures, which can be used in tabletop, social
interpersonal games, or imported into digital games.

I did not design this system to target a particular game,
environment or character manager, in the hopes of
keeping it general enough to function for multiple
applications. I therefore decided to present the generated
character structures based on loosely real-world
representations. This will be discussed in further detail
below.

3.1 System Overview

Modeled after real-world character-structure generation
(i.e. human life), Personage functions by simulating a
generated character's life up to “the present/” For the
purposes of interactive narrative, “the present” is
equivalent to the point where the character will be
encountered or played in the narrative.

The resulting generated character-structure has these
main components:

 Name: The character's name

 Gender: the gender of the character

 Age: the age of the character

 Birth-story: The birth story of the character
including:

◦ birth-date

◦ birth location

◦ sibling order (i.e. fourth child)

◦ parent names

 Event History: The character's formative life
story up to this point. This is represented as a
list of descriptions of the events the character
has been through. The displayed descriptions
are derived from an underlying event model
which includes their associated value types,
intensities, and outcomes.

 Value Type Ratings: how much the generated
character cares about different types(from 1 to
10). These are shaped by the character's event
history. This prototype includes 9 value types:

◦ Family

◦ Health

◦ Appearance

◦ Wealth

◦ Education

◦ Social Recognition

◦ Romance

◦ Friendship

◦ Spirituality

 Ability Ratings: How able the character is in
different areas(from 1 to 10). These abilities are
used to determine the outcome of events during
the simulation, and are likewise shaped by these
outcomes. The ability ratings used in Personage
are:

◦ Intellect

◦ Physical Health

◦ Mental Health

◦ Luck

◦ Intuition

◦ Charisma

◦ Wisdom

3.2 The Generation Process

3.2.1 Initialization

The graphical user interface for this prototype allows
users to specify the gender and viable age range for
characters. Character gender does not have a significant
impact on the generation, but will result in the
appropriately gendered display of text.

The generation begins by randomly selecting the
character's age, based on this user input. Character age is
significant, as older characters will experience more life
events, which will therefore result in a longer event
history and a more nuanced character outcome.

The generator continues by randomly selecting the
character's name and birth story. All names of people
and locations are imported from United States census
data, although first and last names are randomly
matched.

Next, the system allocates the character's initial ability
and value ratings. Abilities are randomly allocated from
a system-specified amount, representing the character's
genetic predisposition. Hence, one character will start
with a drastically different ability profile from another.
Character values all begin at the mid-point, representing
an innocent, blank slate.

3.2.2 Building the Event History

The generator then begins presenting the sim-character
with life events. Because of the formative nature of these
events, I decided to begin tracking character lives at 7
years of age. The system contains a parameter for
number of formative events per year. The current
prototype generates 3 events per year, but this setting
can easily be modified to suit the user's needs.

All of the event information for this system is authored
externally and imported at run-time. It is therefore
possible for users to modify the event associations and
specifications without needing to touch the system's
underlying code.

In this external event specification, each event is
associated with a specific value type, such as family or
education. Likewise, each of these value types is
correlated with associated abilities and their percentage
importance to this value type. For example, the
specification I created declares that romantic events are
determined by 50% intuition, 30% charisma, 10%
physical health and 10% wisdom. In my specification, I
balanced these proportions so no abilities are overall
more significant than others. The system does not
enforce this constraint, although it does require that the
component ability percents sum to 100.

When presenting a sim-character with an event, the
system presents a choice between uniquely value-typed
events. Therefore, a character might need to choose
between a wealth or romance event. The character will
always choose the event-value they rate higher, choosing
randomly in the case of a tie.

3.2.3 Event Evaluation

Events are evaluated as good or bad, with an intensity
level of 1 to 5. Event evaluation is based on the
associated abilities. In evaluation, Personage begins by
calculating the associated weighted ability average, as
described above. The system then factors in the
characters luck. Luck functions differently from the
other abilities, in that it is not associated with specific
event value types. Instead, a “boost” factor is calculated
by randomly selecting from a range determined by the
luck rating. This allows lucky characters to have a
greater chance of success despite difficult challenges or
low ability ratings.

The event's challenge is selected by randomly selecting a
number in the possible ability average range, which
represents the event's challenge. In order to promote
balanced characters, it is always possible for a character
to attain a good or bad outcome when facing an event.
Nevertheless, high or low related ability ratings will

significantly affect the probability of a good or bad
outcome.

If a character's luck-adjusted ability average is greater
than or equal to the event's challenge, they will succeed.
If not, they will fail, and the event will have a bad
outcome. The intensity of the event outcome is
determined by the percentage degree by which the
character succeeds or fails.

3.2.4 Adjusting Abilities and Values

Additionally, events affect the character's associated
value and ability ratings. After evaluating an event, the
system will adjust the associated abilities based on the
event intensity and percentage importance. In the
example used above, a romantic event would have a
more significant effect on the character's intuition than
their wisdom, as intuition was 50% important to this
event, whereas wisdom was only weighed at 10%.

Values are also adjusted after event evaluation, but only
high intensity events can affect value ratings. The
current system allows only events of intensity of 3 or
greater alter value ratings. This is meant to ensure that
only especially significant events in the characters life
will alter his or her core values. The system will repeat
this process, building the event history until the
character reaches the desired age.

3.2.5 Testing the Generation

Once the event history is built, Personage enforces a
number of validity tests. These are in place to promote
the generation of balanced, interesting characters with
varied stories and abilities. These tests can also be easily
modified in the code, although some configurations will
result in impossible constraints, which will not generate
any characters.

The current constraints include:

 30% - 70% good outcome events

 limit of 3 “extreme” values and abilities

◦ extreme means a rating of 1 or 10

 At least one maximum intensity event

 limit of 10% maximum intensity events

 At least one good and one bad level 4 intensity
event

I came to this configuration through testing the system,
and it seems to allow well-balanced characters with
varied stories and ratings.

If a generation fails this test, the system will restart the
entire generation process. This is an admitted weak-point
in the system, which will be discussed in the evaluation
below.

3.2.6 Outputting the Generated Character

Once a generation attempt succeeds, the character's
description will be displayed to the user. This prototype
interface allows the user to display or hide text based on
associated value type and event intensity. At this point in
the process, the character's data is held in the system. It
would therefore be simple to export it to an external
application for a variety of purposes. Characters can also

be saved in text form, or regenerated using the same

random seed and settings.

4. EVALUATION

4.1 Successes

The Personage system successfully generates characters
with fleshed out back-stories, descriptions and correlated
ability and value ratings. A character-structure generated
by Personage could therefore be used as an NPC or a PC
in either a digital or non-digital game. Personage
demonstrates that procedural character-structure
generation can ease the burden of character authorship
discussed earlier in this paper. Obviously, the current

style domain and ability/value specifications are not
appropriate or compatible for all applications, but they
could be modified to fit.

It therefore seems feasible for a GameMaster or game
developer to use Personage for character authoring.
Personage could also be used in real-time during non-
digital games, reducing the pressure on a Game Master
who is suddenly faced with an unexpected ancillary
NPC interaction. Additionally, Personage could be used
as an assistive tool for authoring; giving authors a
starting character template which they can adjust to suit
their needs.

Personage also shows promise for real-time application
to digital games. While the system is currently stand-
alone, it could be modified to export generations to
another program, such as one of the character behavior
managers mentioned above. Obviously, for this type of
export to function properly, the systems would need to
be modified to support a common character-structure
representation. This would allow for generated
characters to be interpreted meaningfully by the external
system. Such a system would then be able to use
Personage to dynamically generate an interactive,
autonomous dramatic character.

4.2 Limitations

One main limitation of Personage is that it requires pre-
creation of the event, ability and description
associations. In order to adapt this system to suit their
needs, a developer will therefore need to customize this
representation and fill it out with content. This issue
could potentially be addressed by authoring universal
modules which could fit into differently stylized
character universes. This might allow developers to
incorporate the system with “off-the-shelf” components
and be up-and-running quickly.

This system allows for deeply inter-related and complex
character stories to emerge, and also allows for
seemingly random generation of non-causally linked
text. The responsibility falls on the domain author to
properly implement the specifications that work for a
certain application. If the domain is not fully fleshed out,
the system may be forced to select the same event
descriptions multiple times in a character lifetime. This
issue is even more likely to appear in long-lived
characters. Therefore, the authoring burden still exists,
but it seems it must fall on someone.

Additionally, the constraint system on authored events is
currently slim. Although events can specify simple pre-
conditions, this system is limited, and allows for event

selections that might not fit well within a character's
story. This system will need to be further developed in
order to ensure that Personage consistently produces
coherent characters.

Another limitation of Personage is its generate-and-test
methodology. This is not the most efficient method for
searching the solution space, and it is likely that a
constraint-language-based solution would be more
effective. For example, the current Personage prototype
can be fed impossible constraints, but it does not have
the ability to recognize this. It will then dutifully try to
generate the specified character, relying on random
number generation to yield a match.

This short-coming forced me to incorporate a
generation-counter and quit value into the system.
Currently, after failing 10,000 times, the system will
abort. Re-implementing Personage utilizing a logically-
based constraint solver would likely address this
concern. This re-implementation strategy would also
allow Personage to solve for low-probability constraint
sets, which might currently fail.

Lastly, the user interface for this prototype is sadly
limited, and does not expose all of the interesting
controls to the player. This would be relatively easy to
implement, but would also give users access to the
aforementioned options which lead to failed generation
attempts.

Personage has not been rigorously tested and it is
possible that long-term use will reveal shortcomings in
the underlying simulation system. If this comes to be,
hopefully this work will still serve to show that such a
simulation-based character-structure generator can solve
some of the important issues discussed here.

5. FUTURE WORK

I believe Personage is a promising start in this area, and
that it demonstrates that this approach to character-
structure generation has merit. My first steps in moving
forward will be to address the limitations discussed
above.

Another significant area for expansion would be to make
the generated character stories dynamically expandable.
In the introduction of this paper, I discussed scenarios
where players wish to learn more about story-characters
they encounter, or more about their own player-
characters.

Because the Personage system itself contains the
character generation model, dynamic, interactive

character expansion may be possible. A character-
structure's depth could therefore be dynamically
expanded to suit a player's desires.

This will require further thought and research, but would
be an exciting avenue to pursue.

6. CONCLUSION

Characters are a core component of interactive narrative
games. Character authoring is a laborious, challenging
task, and authored characters are typically static. Game
Masters are often faced with the need to improvise
character authoring on the fly, while their intensively
hand-authored characters might be ignored. In digital
games, due to time and system resource limitations,
developers frequently limit or eliminate interaction with
many NPCs in the world. The Personage system
described here offers a potential solution for some of
these big problems. Procedural generation of character-
structures is possible, and shows great promise for
dynamically adaptive narrative settings, in which the
player can feel a more full sense of immersion and
agency in their interactions.

7. ACKNOWLEDGEMENTS
I wish to thank Jim Whitehead for his patience as I
completed this project. Additionally, I extend sincere
thanks to Amanda Triplett, Paul Alexander, Carmina
Eliason, and Maitland Vaughan-Turner for their
assistance in authoring prototype event descriptions.

8. REFERENCES

[1] Myst. Cyan. Broderbund. September 1993.

[2] Shadow of the Colossus. Team Ico. Sony Computer
Entertainment. October 18, 2005.

[3] Dungeons and Dragons. Gygax and Arneson. TSR.
1974.

[4] Lininger, Jeff. 2009. Procedural Back-Story
Generation in the Framework of a Murder Mystery.
Southern Methodist University Guildhall.

[5] Chen et. al. 2004. RoleModel: Towards a Formal
Model of Dramatic Roles for Story Generation.
University of California Santa Cruz.

[6] Mei, Marsella and Pynadath. 2005. Thespian: An
Architecture for Interactive Pedagogical Drama.
Center for Advanced Research in Technology for
Education. UCS Information Sciences Institute.

[7] Marsell, Pynadath and Read. 2004. PsychSim:
Agent-based modeling of Social Interactions and
Influence. Information Sciences Institute, University
of Southern California.

[8] Cavazza, Charles and Mead. 2001. Planning
Characters' Behaviour in Interactive Storytelling.
School of Computing and Mathematics, University
of Teesside.

[9] McCoy et. al. 2010. Authoring Game-based
Interactive Narative using Social Games and
Comme il Faut. University of California Santa Cruz.

[10] Sullivan et. al. 2011. Extending CRPGs as an
Interactive Storytelling Form. Center for Games and
Playable Media, UC Santa Cruz.

[11] Riedl and Young. 2005. An Objective Character
Believability Evaluation Procedure for Multi-Agent
Story Generation Systems. University of Southern
California. North Carolina State University.

	1. INTRODUCTION
	1.1 Authoring Non-Player-Characters (NPCs)
	1.2 Authoring Player Characters (PCs)
	1.3 Hand-Authoring and Replayability
	1.4 Problems With Character Authoring
	1.5 Is Procedural Character Generation the Answer?

	2. RELATED WORK
	3. THE PERSONAGE SYSTEM
	3.1 System Overview
	3.2 The Generation Process
	3.2.1 Initialization
	3.2.2 Building the Event History
	3.2.3 Event Evaluation
	3.2.4 Adjusting Abilities and Values
	3.2.5 Testing the Generation
	3.2.6 Outputting the Generated Character

	4. EVALUATION
	4.1 Successes
	4.2 Limitations

	5. FUTURE WORK
	6. CONCLUSION
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

