
The Illuminati Tension Manager

Larry LeBron
University of California, Santa Cruz

1156 High St, Santa
Santa Cruz, CA 95064
llebron@soe.ucsc.edu

Paul Maddaloni

University of California, Santa Cruz
1156 High St, Santa

Santa Cruz, CA 95064
pmaddalo@soe.ucsc.edu

Abstract-Tension is a major aspect of involving
players in a game experience. Dynamic tension
management allows authors to provide a desired
tension arc to their game without having to confine
players to a strict, pre-scripted path. While this
has been previously attempted by a small faction
of computer scientists, there remains much
research to be done in this area. The Illuminati
tension manager is our prototype solution to the
notion of dynamic game tension management. In
this paper, we describe the system underlying
Illuminati, and our experience testing it with
Jumper, a simple text-based client game. Our
eventual hope is to help such technology be
available and oft used in game creation.

Index Terms
gameplay, playthrough, playability, replayability,
tension arc, Illuminati drama manager, tension
manager, prescripted, mechanical affordance, formal
affordance, play-testing, goal axis, <failure, success>
impact.

1. Introduction

 Video games can allow for complex interactions
with their environments. These interactions are
typically static and inflexible, and rely on pre-
authored stories and content to deliver narrative
layered over gameplay. Many games follow a strict
story path, and have corresponding play elements that
halt story progression until completed. A game’s
sense of tension is thus pre-scripted by the game’s
author(s), which may or may not be able to achieve

the desired arc sought by the creators. Creators can
give players a limited number of ways to interact with
their game, forcing players to experience things in a
certain order that authors depend on to maintain their
desired narrative tension. Attempting to provide
freedom can give players more latitude in how they
approach the game story and its world, but may miss
the mark in terms of a desired tension because of the
unpredictability of players’ actions.
 A tension arc can be seen as a desired progression
of player emotion and tension as a game is played. A
typical arc found in many games, movies, and stories
in general, starts with low tension that initially
increases slowly, but ascends more rapidly as the user
progresses toward the end of the experience,
eventually reaching a climax. Different variations of
this tension arc can be achieved with fluctuations of
hills and valleys, or even a reverse tension arc where
the beginning of an experience is most tense for
subjects.
 This raises the question of why should game
creators and players care about users experiencing any
type of tension arc? Authors can depend on their
gameplay providing some type of tension, such as
progressive difficulty increases as players get farther
in a game, culminating in boss battles and/or some
ending sequence. Alternately, the story can provide
some or all of the tension, following a typical
Aristotelian story arc, with the tensest moments
coming at the end of a narrative. In many games these
two ideas are presented simultaneously, and when
done in this matter can be seen as different
experiences, causing the two to have no real bearing
on each other.
 While some games have attempted to have the two
work in tandem, this is a much less common

approach. Games such as Heavy Rain [1] attempt to
have all player action affect the story, but player
interaction boils down to quick-time events, providing
players with little leeway in play style or action. The
Walking Dead [2] presents players with a similar
experience, offering limited gameplay complexity,
and relying on a seemingly deep choice system for
character interaction. Unfortunately, due to its use of
static, pre-authored events, story arcs can never
diverge far from a main arc that always leads to a
similar conclusion.
 The majority of games take the more divorced
approach, where story is an overarching structure that
is told statically to the player, and pieces of gameplay
are interspersed throughout. In this method, not much
attention is paid to the two locking solidly together, or
informing each other. Gears of War [3], Mass Effect
[4], and the Grand Theft Auto [5] series are all
examples of gameplay not allowing for much, if any,
flexibility in main stories (the Mass Effect series
being the most highly criticized for its faltering in this
aspect). Players are free to play missions in any way
that they see fit, but the story is not significantly
influenced by the resulting gameplay.
 A small collection of mainstream games has
attempted to make some actions in gameplay affect
storytelling in games. For instance, Call of Duty:
Black Ops 2 [6] determines which parts of its main
story to tell players depending on how fast they are
able to achieve some mission objectives, such as
stopping the enemy from destroying intelligence, or
saving VIPs. Unfortunately, even this modest
approach is not in wide use. This example, as well as
other games which attempt to give players more
influence on the story through mechanical affordances
and player actions, is more of a novelty rather than a
staple of large commercial games at this time.
 We intentionally developed our tension
management system, Illuminati, to allow for games
that bridge gameplay and dynamic story. When
queried by a client game, the manager suggests player
choice options for maintaining a desired game tension
arc. Depending on player choices and their outcomes,
the story is changed, as well as what choices are
presented to the player, all while maintaining the
desired tension arc provided by the author.
 This is important because it allows a game to adapt
to a player’s actions in a particular playthrough of a
game. Likewise, the tension manager ensures that
player experience will change relative to the specific
choices they make. This allows for variable
replayability, because the probability of being

presented with duplicate playthroughs is extremely
low. The system allows for a directed arc that the
designer determines, without having to worry about
scripting a specific sequence to ensure that arc.
Instead, developers using our system can craft
procedural game elements (missions, NPCs, etc.),
which will be instantiated based on the tension
manager’s suggestions.
 There are some notable entries into this area of
research that have influenced and inspired our
approach. From the academic community, the EmPath
and Facade systems attempt to control story plot by
manipulating the game world, as well as the
mechanical affordances given to the player. On the
commercial side, some large companies such as
Valve, Epic, and Ubisoft, have attempted to use
dynamic systems in their games to control game
tension and story by observing player behavior. For
instance, Epic’s Gears of War: Judgment [7] keeps
track of player performance, and dynamically changes
enemy spawns and tactics based on player actions and
strategy.
 In designing this system, we sought to create a
general, engine-like tool, which can be utilized by a
client game to maintain a specified tension arc, while
fostering adaptability and gameplay variability. In the
coming sections we will discuss related research in
this area, and then move into an examination of the
underlying tension model upon which Illuminati is
based. Finally, we will discuss our experience testing
Illuminati with a simple client game, along with the
successes and limitations of this prototype system. In
the future, our hope is to expand this work into a
functional, general tension engine for any designer to
employ.

2. Related Work

 One attempt at dramatic management through
modification of game elements is Lewis, Sullivan, and
Chen’s engine EmPath [8]. The system’s drama
manager manipulates the world based on author-
specified evaluation mechanisms that enforce “story
goodness.” The game evaluates what has occurred in
the game world thus far, and determines how and
which plot point to present next by searching through
possible future game states. It offers these plot points
by adding or removing things from the game world.
To receive plot points, players can find hint notes,
garner items dropped by enemies, or gain information
given by NPCs. The system only attempts to affect

drama or tension in the game through gameplay
elements, instead utilizing to story components to
deliver narrative points, omitting direct control over
tension by the system.
 Another related work is Suspenser, a
Computational Model of Narrative Generation
developed by Cheong and Young [9]. This system
takes a story world comprised of possible events,
actions and repercussions as input. It then outputs a
sequenced story, with the intention of matching
author-specified suspense levels for story points. The
system models an event’s suspense based on a model
of the reader’s perceptions. The reader model contains
the hypothetical reader’s notions of possible plans for
the protagonists to accomplish their goals. Overall
suspense is then defined as the inverse of the number
of planned goal solutions. Suspenser measures the
potential suspense of actions based on summations of
action-effects that might threaten or support those
goals. It then picks the closest fitting matches to add
to the output story.
 Cheong and Young present a well-defined model
with some supporting sample output, but admit their
implementation does not match the complexity of the
underlying theory. In its current implementation,
Suspenser supports a more simplistic reader model
than they desired, and only allows for output stories to
achieve overall levels of high or low suspense.
Additionally, the system does not allow for real-time
user input, limiting its ability to be used in highly
interactive games.
 In a successful attempt at marrying story
manipulation with player interactions, we look to
Stern and Mataes’s Facade [10]. Facade uses two
explicitly tracked values of tension and affinity. In
this system, tension is a controlled story value
appearing in the effect slots of story beats. Affinity is
the degree to which the two non-playable characters
(NPCs), consider the player to be siding with them. It
is not possible to have positive affinity with both
NPCs at the same time, making any attempt to do so
futile.
 In its story-beat selection, Facade’s drama
management system attempts to conform to a desired
Aristotelian drama arc. The system scores beats by
taking into account the player’s action history, and
selecting the valid beat that best matches the desired
tension curve [11]. These beats have predetermined
effects, and are not dynamically generated, so the
system must pick the beat that will result in the closest
tension outcome. This system’s approach allows for

replayability, as players can have many different
experiences based on their approach to the story.
 A surprisingly fresh and forward thinking
approach in the commercial sector was taken with
Ubisoft’s AAA first-person shooter, Far Cry 2 [12].
Designers for this game were interested in gamers
being able to shape the story through their actions, as
well as having actions carry meaning and weight. This
end was achieved by having generalized pieces of pre-
authored story and behavior dynamically sewn
together depending on how the player interacts with
the game. Content presentation was determined by the
player’s “infamy,” a metric that is calculated based on
the gamer’s actions [13]. The player’s main method of
interaction is through their weapon, with the use (or
lack of use) determining their “infamy.” This
correspondence neatly ties the formal affordances of
the game with the mechanical affordances. In their
open world shooter, the developers strove for
gameplay shaping the story, rather than the two being
incidental.
 Far Cry 2’s system is described as having a
“dynamic story architecture” that takes large banks of
content and divides them up into small pieces, called
“micronarratives.” The system then delivers those
pieces in a way that reflects the current state of the
game world as well as by “infamy” [14]. This process
was designed to be invisible to the player, which
unfortunately made its implementation mostly
overlooked by critics and the masses. Since missions
were 40-60 minute chunks of gameplay, the resulting
dynamic decisions made by the system about the story
and world seemed like happy coincidences to players,
rather than results of their actions. Had gameplay
sections been smaller, it is possible that this novel
system may have evinced more impact, and/or been
more apparent to those playing.
 Another piece of related work that takes an
inventive approach to dynamic tension is Valve’s Left
4 Dead 1 and 2 [15]. These two games utilize a
system called the Director, which determines
gameplay elements based on player actions and
experience. To achieve this, there are multiple
artificial intelligence systems at work within this
game [16]. The protagonists and enemies have
“reactive path following,” “intentional actions,” and
an awareness of all events that have occurred in the
world, all in order to provide appropriate feedback
and responses to player progression through a level.
There is an “adaptive dramatic pacing” element which
is designed to give peaks and valleys of tension in
gameplay by altering enemy population size and

placement. The Director uses procedural placing of
enemies and loot by analyzing metrics, and reasoning
based on player performance and position. This
system generates a dramatic game pacing that
ostensibly provides a different gameplay experience
each and every time a level is played, promoting
replayability on a large scale.
 The Director mostly succeeds in providing a
dynamic experience that changes based on player or
team performance, rooted in mechanical affordances.
The problem with it is that the same story is always
told, and the player has no agency in how, when, and
where the events of the game will take place. In a
missed opportunity, the Left 4 Dead series always
presents the same sections of the environment and
story every playthrough, leaving the Director only
able to manipulate gameplay aspects.

3. The Illuminati Tension Manager

 Our system, which we’ve named Illuminati, serves
as an engine-like tool for dynamically managing the
tension of a client game. It functions by providing the
game with suggestions for player choices and game
state modifications that conform to a specified arc of
tension over time. In order to utilize the system, the
client game must comply with Illuminati’s supported
game model. For this prototypical version, Illuminati
can only provide suggestions for a game based on a
single success-failure continuum, along which the
player making choices to proceed toward success. We
will call this the goal axis, and the player’s current
position on this axis, the goal state.
 At the start of the game, Illuminati must be
initialized with the desired tension arc, the arc
duration, and the goal axis values for success and
failure. The tension arc provides the manager with a
series of percentage-based tension parameters that can
apply to any specified game duration. At run-time, the
client-game can then query Illuminati to receive
choice and state-modification suggestions. It is the
client’s responsibility to update Illuminati with the
current goal state and time. The system will then
interpolate to find the desired tension level, making it
the client’s responsibility to implement Illuminati’s
determinations.

The Tension Model

 In order to make choice and modification
determinations, Illuminati employs a mathematical
model of moment-to-moment tension. Its model ties
together notions of goal-based choice importance and
outcome probability. The system maps the notion of
importance directly to tension. In this model, a
choice’s importance is dictated by how close it can
bring the player to an end-state on the goal axis. A
choice that would result in no movement on this axis
would be considered to have no importance, whereas
a choice that could result in reaching an end-state
would be maximally important.

According to this model, a choice’s tension is
equal to its importance. Therefore, a set of player
choices that would potentially move the state 50%
towards an end-state would present 50% tension. In
designing our system, we dubbed this goal-state
movement percentage the impact of the choice.
 It is important to mention that this impact percent
on the goal axis will be represented differently
depending on the actual game state. For example,
consider a scenario in which the current state on the
axis is a 7, where 0 is marked as failure, and 11 is
marked as success. A 50% tense choice might
therefore move the state 3.5 units towards failure,
while it would only move the state 2 units towards
success. In this case, both of these outcomes move the
state the same impact percentage towards an end, but
are represented differently in the game-space. In this
scenario, the choice presented would have an failure
impact of 3.5, whereas the success impact would be 2.

4. PRESERVING PLAYER AGENCY

A. Choice Variation

 If the impact percentage was the sole factor in
importance determination, a given tension level
determination would allow only choice options with
an impact percent matching the desired tension level.
Although this one option might match the desired
tension level, limiting player choice in this way would
drastically restrict a player's sense of agency. We felt
strongly that client games should be able to offer
multiple choices at any given tension level, so we
incorporated the notions of modified impact
percentages and probabilistic tension evaluation.
 With these additions to the model, Illuminati can
suggest choice options with variable impact
percentages. The model compensates for the delta
between these modified impacts and the desired
tension percent by altering the outcome probabilities.
The perceived tension of the choice will remain
constant if the probability of an outcome is decreased
as its impact is increased beyond the desired tension
percent. In a calculating an impact-modified choice,
Illuminati will increase either the success or failure
impact percentage, and will correspondingly decrease
the probability of that outcome. The probability
decrease will be proportionate to the impact percent
delta.
 In the example above, the system would have
assigned a probability of 50% to each outcome, as
they both match the desired tension level. We refer to
this as the base probability. A modified choice for this
scenario might present an additional 25% success
impact percentage, an increase of 50%. This would
result in an increased success impact of 3. In
response, the system would decrease the probability
of this outcome by 50% of the base probability, for a
final probability of 25%.
 To maintain balanced tension, the same 25%
would increase the failure probability for this option,
and the failure impact would be decreased by 50%
proportionately. The client game can then implement
this probability space through pure computation, or by
giving the player an execution task with a difficulty
level that matches the specification. By necessity, this
balance limits the system from modifying impact
percentages by more than 100%. It also limits impact
percentages to a range of 0 to 100%.

 In these instances, the extra impact percent could
allow players to reach an end state before
experiencing the full tension arc duration. This
inspired us to introduce the concept of author-allowed
progress throttling, which we will discuss in the next
section.

C. Access to End-States

 For players to have a sense of agency as they try to
accomplish their goals, it is necessary for them to feel
that their choices truly impact their progress towards
success or failure. Unfortunately, it is challenging to
guarantee a desired tension arc experience while
maximizing player agency. In the initial, unmodified
tension model, players would be unable to reach an
end-state until the desired tension arc reached 100%.
In the modified probability model, it is possible for an
end-state to be reached prematurely.
 To address this, Illuminati allows client games to
specify a minimum percent time before end-states will
be accessible.
 For example, a client can specify that the player
must experience 65% of the desired tension arc before
being able to succeed or fail in their goal. Once this
point in the arc duration is reached, the system will
allow extra impact percentages that cover the entire
goal axis. The probability of these modified choices
will still be balanced to reflect the current desired
tension, resulting in significantly amplified choices
occupying correspondingly less of the probability
space. As mentioned above, extra impact percentages
cannot exceed the desired tension percent, so end-
states can only be reached at tension levels of 50%
and above.

 As choice variability is random and dynamic, the
system will not enforce game-ending choices until
100% tension has been reached. Illuminati therefore
provides an override system which allows the client
game to request a set of climactic choices. These
choices will push the game state to failure or success,
ending the experience.
 If the minimum percent end-state time has not yet
been reached, Illuminati will limit the overall impact
of choices to prevent end-states. If the player has
advanced too far to one end of the goal axis, this type
of impact limiting will restrict the system’s ability to
provide choice variation. In these cases, the system
will suggest a modification to the goal-state, which
will push the player away from the edge of the goal
axis. At most, this goal-state modification will push
the state halfway to the other side of the axis.
Illuminati will then present choices that reflect the
impacted goal state. Again, it will be the client game’s
responsibility to enforce the state change.

D. Client game: Jumper

 The underlying Illuminati tension manager was
tested with Jumper, a simple game which was
designed to highlight the engine’s current ability and
potential. The game is a simple text-based interactive
story, where the player interacts by deciding between
three choices within a twenty second time frame per
turn. The entire game is relegated to 2 minute
playthroughs to keep any single game session from
becoming stale, and also allow for replayability. For
this game, we chose a highly tense situation of a man
threatening to jump off of a building, with the caveat
that he also has a bomb strapped to his chest.
 Players are presented with scene text, which
describes what is happening in the game. They are
told how much time the bomb has left on its timer,
how many steps the man is from demise as wells as
safety, and also how much time left is left in a turn.
The game presents three buttons, each with a
description of what the protagonist (the player) will
attempt, along with how many steps the jumper will
move from the edge of the building if successful, how
many steps toward the edge if unsuccessful, and how
risky the move is. The user selects a button, and once
the choice timer runs out, they are presented with the
results of their action via scene description and the
jumper’s new location. The resulting scene text is tied
to a player’s success or failure, though the player
choices are procedurally determined based on how
“tense” the current game is. Random events can also
be inserted into the scene text if the player begins to
succeed or failure too early in gameplay.
 Three outcomes are possible in Jumper’s current
iteration: players can save the jumper before the bomb
goes off, the jumper can leap from the building before
the bomb’s timer has elapsed, or a stalemate where
the jumper neither jumps nor comes off the ledge, and
instead the bomb’s timer expires ending the game.
Players are unable to win the game earlier than 50
seconds having passed, but beyond that threshold,
users have the ability to win.
 Although Jumper demonstrates a good deal of
Illuminati’s capabilities, it also falls short in a few
significant areas. Because of the text-based nature of
the game, and limited development time, it relies
heavily on pre-scripted text assets. This results in
gameplay experiences that aren’t as representationally
varied as the underlying dynamic impact and
challenge structure of the choice options.
 Additionally, Jumper’s goal axis is tied directly to
the man’s number of steps from the edge (failure) and

safety (success). In order to succinctly represent the
goal state, the game employs an integer-based
representation of the goal axis, instead of a floating-
point continuum. This limits the choice options from
complying fully with Illuminati’s suggestions, as all
values are rounded to conform to the game’s discrete
state representation.
 The system’s depth would be better represented by
a client game with a continuous, procedural
representation of the goal axis and goal state, which
could be represented easily with a graphical
implementation. The current version of Jumper does
not allow players to actually execute any of their
choices beyond deciding which button to press. The
game then rolls a dice (bounded random number
generator) to see if the choice succeeded.
Unfortunately, this misses the opportunity to allow the
procedurally determined challenge to impact users’
play outside of renegotiating which choices to pick.
By allowing players to execute on this probability,
they would better be able to internalize the probability
space, instead of attempting to reason

as to how the computer will evaluate success and
failure. A simple idea that could be implemented for a
near-future iteration of Jumper, would be some sort of
meter that grows larger or smaller as determined by
the tension manager. This would make the changes
that Illuminati is making more apparent, as well as
aptly giving the player the opportunity to interact with
this newly determined challenge.

4. Successes of Illuminati

 As evidenced by play-tests with Jumper, Illuminati
succeeds at providing choice options which adapt to
the specified goal state. This allows the client game to
present options that change relative to prior player
actions, promoting greatly mixed mechanical
variability. As stated above, it is the responsibility of
the client game to represent this mechanical
variability, which is an area where Jumper is unable
to demonstrate the full potential of the system.

 Additionally, Illuminati succeeds at presenting
choices which reflect the desired tension specified. As
a play session of Jumper progresses, the player will be
presented with choices that impact the goal state
directly corresponding to the specified tension arc. In
this regard, Illuminati functions as a general tension
management engine in the way we intended.

5. Future Iterations

 This prototype of the Illuminati system is limited
in several ways, which we hope to address in future
iterations. In its current form, the system is only able
to reason over a single goal axis. The choice options
are all directly tied to this axis, which limits the
overall expressiveness of the system. A deeper game
experience would likely offer multiple simultaneous
goals, each with multiple goal-state axes.
 For example, Bethesda Softworks’ Dishonored
[17], allows players to pursue multiple objectives
simultaneously, each allowing multiple avenues for
success or failure. At any time, a given player might
be attempting to pursue assassination, collection, and
navigation goals via varied means that include stealth
and combat. The intersection of these goal axes all
combine to dictate the player’s tension level, based on
the player’s valuation of these goals. In order for
Illuminati to support this level of client game
complexity, we will need to expand its tension model
accordingly.
 Another significant limitation of Illuminati is its
restriction to suggesting choice options and goal-state
modifications for tension modeling. In our future
work, we plan to expand the system’s tension model
to include other forms of tension, such as
representational and temporal tensions.
Representational tension modeling will include
modifications to the sound and appearance of game
content, while temporal tension modeling will affect
the flow of game-time related aspects. Allowing
Illuminati to regulate tension through these alternate
avenues would provide greater gameplay variety and
more significant variation between replays.
Additionally, this would provide the system with
alternate means for suggesting high-tension scenarios
without allowing player access to end states.

6. Conclusion

 This paper has presented the first iteration of the
Illuminati tension manager and its application to a
real-time game that runs in a discrete, text based
world. Other modern takes on procedural
modification of game story and environment that
informed our system have been examined in our
discussion. The client game Jumper was built to test
the initial functionality of the system and has
successfully showcased some of Illuminati’s abilities,
as well as some future places for improvement. While
the discrete presentation of Jumper’s world shows the
changes that Illuminati makes, it falls somewhat short
of allowing the player to internalize and interact with
the constantly fluctuating challenge and impact. Our
tension manager is still in its nascent stages, and many
improvements are forthcoming.
 As a first foray into dynamic tension management,
we believe that our system shows exciting promise.
Our hope is to create a general tool that will be usable
by the majority of games in the future. We aspire to
promote games having more dynamic, procedural
content that allows authors to provide a desired story,
while at the same time gameplay that allows for
maximum replayability and flexibility. This
application can apply to the multitude of game genres,
ranging form action games, to puzzlers, to adventure
games. By providing a desired tension arc for a game,
the engine can provide a corresponding experience:
from a puzzle game changing its difficulty on the fly,
to an adventure game changing the location and order
of events based on player history.
 While we have lofty goals for this engine, our next
step is to apply Illuminati to a real-time game that
offers a continuous interaction with the game world.
We imagine that this would be done with a
graphically-based game, as opposed to Jumper’s text-
based gameplay. This seminal iteration provides a
good base to build upon, and we believe our desires
can be achieved. As we are large proponents of the
power of the video game medium, the inclusion of
dynamic tension management seems like an important
element for the advancement of this art form.

7. Acknowledgements

 The authors of this paper would like to thank
Michael Mateas and Noah Wardrip-Fruin for their
continuous support and encouragement in our

endeavors, as well as Sejin Park and Amanda Triplett
for their patience and playtesting.

8. References

[1] Quantic Dream. Heavy Rain. Sony Computer
Entertainment, 2010. Playstation 3.
[2] Telltale Games. The Walking Dead. Telltale
Games, 2012. Xbox 360, Playstation 3, PC, iOS.
[3] Epic Games. Gears of War 1, 2, 3. Microsoft
Studios, 2006, 2008, 2011. Xbox 360.
[4] Bioware. Mass Effect 1, 2, 3. Electronic Arts,
2007, 2010, 2012. Xbox 360, Playstation 3, PC.
[5] Rockstar Games. Grand Theft Auto IV. Take-Two
Interactive,. 2008. Xbox 360, Playstation 3, PC.
[6] Treyarch. Call of Duty: Black Ops 2. Acitivsion,
2012. Xbox 360, Playstation 3, Wii U, PC.
[7] People Can Fly. Gears of War: Judgement. Epic
Games, 2013. Xbox 360.
[8] M. Mateas, C. Lewis, S. Chen, and A. Sulliven.
“EMPath: Applying Drama Management to a Quest-
Based Game,” 2009.
[9] Y. Cheong, M. Young. “A Computational Model
of Narrative Generation for Suspense,” in AAAI 2006
Computational Aesthetic Workshop. July 16, 2006.

[10] M. Mateas “Interactive Drama, Art and Artificial
Intelligence.” Ph.D. dissertation, December 2002.
[11] M. Mateas, A. Stern. Facade: An Experiment in
Building a Fully-Realized Interactive Drama,” 2003.
[12] Ubisoft Montreal. Far Cry 2. Ubisoft, 2010.
Xbox 360, Playstation 3, PC.
[13] C. Remo, B. Sheffield (July 18, 2008).
Gamasutra.com: Redefining Game Narrative:
Ubisoft's Patrick Redding On Far Cry 2 [Online].
Available:
http://www.gamasutra.com/view/feature/3727/redefini
ng_game_narrative_.php
[14] C. Onyett. (February 22, 2008) GDC 2008: Far
Cry 2's Dynamic Story [Online]. Available:
http://www.ign.com/articles/2008/02/22/gdc-2008-
far-cry-2s-dynamic-story
[15] Valve Corporation, Turtle Rock Studioes. Left 4
Dead 1, 2. Valve Corporation, 2008, 2009. Xbox 360,
PC.
[16] M. Booth, Valve. “The AI Systems of Left 4
Dead,” in Artificial Intelligence and Interactive
Digital Entertainment Conference at Stanford. 2009.
[Online] Available:
http://www.valvesoftware.com/publications/2009/
[17] Arkane Studios. Dishonored. Bethesda
Softworks, 2012. Xbox 360, Playstation 3, PC.

