
Visualizing Loops and Data Structures
in Xylem: The Code of Plants

Heather Logas, Richard Vallejos, Joseph Osborn, Kate Compton, Jim Whitehead
Center for Games and Playable Media
University of California, Santa Cruz

Santa Cruz, CA 95060
{hlogas, rvallejo, jcosborn, kcompton, ejw}@soe.ucsc.edu

I. Introduction

Computer games about computer software face an inter-
esting challenge when it comes to representing core program
concepts such as variable values and data structures. A simple
and straightforward approach is to directly represent them in
programming language syntax (such as with Pex4Fun [14]),
but this lacks the visual interest and excitement that are a
fundamental attraction of computer games. More ideally, a
game can use a visual representation of these core concepts,
thus improving the visual appeal of the game, and permitting
a game to have a consistent overall visual theme.

Visual representation of variable values and data struc-
tures is a challenging problem. Consider the representation
of integer variables. For small values, a value can be repre-
sented using repeated images of some item. If a variable has
a value of five, the game can depict five flowers on screen.
But, what if a variable value is closer to the maximum integer
value? Further, lists are pervasive in software and raise even
more representational challenges since they need to represent
both individual element values, as well as the list as a whole.
This implies that the visual theme for the list needs to be con-
sistent with that of individual list elements.

Abstract – The visual representation of software data
structures is especially relevant to the creation of games which
crowdsource science problems to a gaming community and to
educational games which seek to teach computer science con-
cepts within the context of computer games. Xylem: The Code
of Plants is a game designed to crowdsource formal software
verification via loop invariant specifications. Due to the nature
of this project, it was important that the game 1) appeal to a
large audience, 2) support a wide variety of data structures and
3) hide any actual data from the source code that was generat-
ing the game levels. To these ends, a method of visualizing data
structures was developed that features a consistent plant-based
narrative metaphor, is flexible enough to accommodate multiple
types of data structures while maintaining narrative integrity,
and obscures all real data from the target source code.

Index Terms – Program visualization, data structure visu-
alization, games and software engineering, software verification
games, formal verification, loop invariants.

Xylem: The Code of Plants is a game designed as a
tool for crowdsourcing formal software verification. More
precisely, by playing the game, players find loop invariant
specifications. To support this, Xylem presents information
to the player about how a specific loop (for loop, while loop)
behaves, and it must do this without presenting the surface
program text to the player. Xylem accomplished this feat by
presenting players with the value held by variables at dif-
ferent points in the execution of the loop. Players examine
these variable values, and then write algebraic equations that
are true across all loop iterations. These equations are (par-
tial) loop invariant specifications, which help reduce variable
value uncertainty when performing formal value analysis of
software systems. We have previously published a more de-
tailed paper exploring Xylem’s game design and scientific
objectives [16]; this work focuses specifically on the visual-
ization, situating our particular approaches and techniques in
the context of other program visualization work.

Xylem is intended to support many different types of
data structures, so as to provide the game with a wide expres-
sive range. With a broad set of supported data structures, the
game can support a wide range of actual program loops in
the game, thus increasing the value of the crowdsourcing ap-
proach. This created the challenge of designing a set of data
structure visualizations that held together with a consistent
narrative – that of the game. As a result, the production of
Xylem: The Code of Plants afforded the opportunity to ex-
plore visualizations for different data structures.

Explorations into different ways of displaying data
were driven by the need to design a game that appealed to
a large audience, of the sort that might play casual games
online. While early prototypes of Xylem were entirely num-
bers based, profiles of potential audience members showed
a discomfort with numbers and math. It therefore became
important to develop a screen design that would support the
verification work needing to be done while at the same time
creating a narrative space that would be appealing to a wide
variety of players. The concerns of game design, therefore,
indicated the development of a coherent visual metaphor
across multiple data structure types.

The key contribution of this work is a consistently
themed visual representation for software loops, including
integer variable values and lists of the same, whose values

change over multiple iterations of the loops. A statement of
goals is provided, listing issues that must be addressed by any
game wishing to have a consistently themed visual represen-
tation of loops and software data structures.

II. Related Work

Visualizing the structural elements of a program, such as
the body of a loop, has traditionally been achieved by the use
of both static and dynamic approaches [5].

The static approaches present a visual analogue of the
textual source code, usually favoring diagrammatic represen-
tations of control structures. In an early paper on formal veri-
fication, Floyd uses flowcharts to visualize the control struc-
ture of program loops, annotating his diagram with invariants
to show the importance of such statements in the proof of a
program’s correctness [4]. Dynamic approaches present the
behavior of a program structure. Algorithm animations are
a common technique for presenting the trace of a program.
Baecker’s classic video “Sorting Out Sorting” has left a last-
ing motivation for the visualization of algorithmic behavior
[7]. By providing a state-by-state trace of algorithm output
over time, such algorithm animations support fast compre-
hension, and cross-comparison of approaches.

Educators have found the need to illustrate the abstract
fundamentals of computer science through the use of visu-
alization. Astrachan introduces the idea of a “picture invari-
ant,” an informal diagrammatic representation of a loop in-
variant, advocating its use in teaching students how to use
loop invariants early in a CS curriculum, without requiring
an understanding of formal logic [10]. The field of algorithm
visualization focuses on providing a visual representation of
the execution of a wide range of algorithms, and involves
visualization of the data structures used in the algorithm [12].
The Algorithm Visualization Portal at wiki.algoviz.org pro-
vides a catalog of many algorithm visualizations, including
linked list visualizations. These overwhelmingly use a utili-
tarian visual representation involving boxes and arrows and
are inappropriate for use in games since they do not use an
interesting visual theme. Some algorithms employ algorithm-
specific visualizations, such as showing a bar chart or line to
show values progressing from sorted to unsorted states [13].
Such visualizations typically only apply to a limited range of
algorithms, and are not useful when attempting to represent a
broad range of possible algorithms. An algorithm-specific ap-
proach doesn’t work when the algorithm isn’t known a priori,
as is the case with loops in Xylem.

Ginat discusses the use of mathematical games in dem-
onstrating the thought process of invariant construction [11].
More recently, Eagle et al. [8], and Boyce et al. [9], have
developed computer games for teaching the mathematical
and syntactic fundamentals of CS. In the game Wu’s Castle, a
game developed by Eagle et al. and targeted to first year CS
students, players solve puzzles by tuning the parameters of
“for” loops to manipulate array data structures. Boyce et al.’s
BeadLoom invites player to recreate goal images through

the use of basic programming. Targeted to middle and high
school students, BeadLoom introduces fundamental concepts
of graphics and iterative thinking.

In contrast to algorithm animations, where the aim is to
show an abstract representation of loop dynamics in order
to give a “big picture” of an algorithm’s behavior, in Xylem
we adopt a “film strip” representation of the iterations of a
loop, which we believe allows for both a global perspective
of overall trends as well as the detail needed to construct in-
variants specific to data. As compared to existing work on the
visualization of data structures, Xylem applies a universal vi-
sual metaphor across multiple types of data structures. Since
this metaphor is visually appealing and avoids the classic
boxes and arrows visualization approach, it provides a more
interesting thematic setting for games about software.

As part of the DARPA Crowd-Sourced Formal Verifica-
tion program four other projects (in addition to Xylem) were
created – Stormbound, Flow Jam [18], Ghost Map, Circuit-
Bot. Stormbound shares similar goals to Xylem, in that it also
uses invariant finding of loops as a way to make progress
on formal software verification. However, instead of ask-
ing players to identify patterns with mathematical equations,
Stormbound presents them with a spatial interpretation of the
loop data which is represented as icons (“sigils”) on a grid.
Players can also combine smaller statements into larger ones
by selecting a particular pattern and then selecting another.
Both Flow Jam and Ghost Map provide graphical represen-
tations of data flow and control flow within software, and
broadly focus on ensuring a particular condition holds across
a particular path. Circuitbot focuses on pointer analysis.

III. Goals

In order to meet goals for the project of which Xylem
was a part, there were a number of constraints that needed to
be addressed:

Create an enjoyable game that would appeal to a large 1.	
audience, in order to bring as much crowdsourcing pow-
er to bear as possible.
Give players the tools to, by way of playing the game, 2.	
contribute to formally verifying the source code from
which the game levels are derived. This should be con-
structed in a flexible manner, so that potentially any pro-
vided source code could be converted into game levels
and distributed to players for processing through play.
Obscure said source code, in order to prevent potentially 3.	
malicious behavior.
These constraints fed directly into the development of

the visualization methods deployed in Xylem. Since the game
needed to appeal to the large casual gaming audience, many
of whom do not necessarily associate working with math and
numbers as the height of entertainment, the need to abstract
out or obfuscate the number aspect of the experience was
key. At the same time, this audience was not anticipated to be

overly computer science literate, and so there was a need to
present domain-specific information in a way that is under-
standable to users who may lack domain knowledge. Along
with this was the need to make interaction with that domain-
specific information motivated and clear, without having to
introduce domain-specific notation and terminology. And, in
keeping with the expectations of casual game players, an ap-
proach was needed that would support a consistent fiction
within the game narrative.

To further complicate manners, it was an imperative part
of the overall project to not allow players direct access to any
of the source code of the target software. This includes show-
ing even small snippets of actual source code. Therefore, the
visualization must not only show the game data in a pleasing
and consistent manner but also must effectively obfuscate the
code such that members of the public are not able to recon-
struct any part of the software.

The approach chosen to address the problem of formal
software verification is to allow players to discover the in-
variants of loops in the target software. From a visualization
standpoint therefore, the need arose to present on screen the
inner mechanics of a loop, and further to visualize a wide va-
riety of data structures that might occur within a loop. Since
the game needed to be flexible enough to potentially handle
any arbitrary data that was handed to it, a major concern of
the visualization component of the project was to be able to
represent a wide variety of data structures on screen.

Within the fictional context of Xylem, players navigate
a newly discovered island by investigating mysterious plant
species. As they make discoveries, players gain points and
levels, allowing them to unlock new areas to explore. The
game is open ended, with no set winning or losing condition.
More information about the player experience can be found
in previous work by the authors [16].

IV. Towards a Coherent Metaphor

Early prototypes of the game that would become Xylem
featured a space-like theme with an abstract UI design and
all variables from the loop represented by the numbers be-
ing generated by said loop. In an effort to make Xylem more
accessible to the identified target audience, it was important
to replace those numbers wherever possible with symbols.
These symbols needed to be intuitive to use while supporting
the software verification work.
A. Complex Plants

Plants are a familiar part of most humans’ existence in
one way or another, and to many are appealing and friendly.
In user-tests, players could easily distinguish between dif-
ferent plant features as representing different variables. Us-
ing plant features that change at different stages of a plant’s
growth made enough sense to players that it eliminated the
need to explain too much backstory before they could be pro-
ductive.

Another advantage to working in the plant kingdom

is that it offers the flexibility necessary to represent a wide
range of data structures. Because of the origination of the
game level data from arbitrary pieces of source software, the
data structures which would appear in the game could not be
predicted with any certainty. By surveying different varieties
of plant forms, a system for potentially visualizing integers,
one and two dimensional arrays, linked lists, stacks, queues,
links and graphs, as well as a modular visualization concept
for undefined data structures was developed.

Early attempts to use plants as a visual metaphor em-
ployed many different plant features as symbols for variables.
A list of roughly thirty different plant features that could be
drawn from as symbols for variables – number of petals on a
flower, height of plant, number of stamen, number of flowers
on a plant, number of leaves on a plant, number of thorns,
etc. – was developed. Eventually game production concerns
prevailed, and in order to streamline the creation of poten-
tially thousands of plants, a procedural flower generator was
created. In the current version of Xylem, each integer loop
is represented by a plant that has one or more types of flow-
ers growing from it, each one representing a single variable.
Players have so far seemed unconcerned with the botanical
impossibility of such a scheme.

In order to explain moving back and forth through itera-
tions of a loop (which in the game narrative shows different
versions of the same plant), some rather convoluted solutions
were attempted. One concept involved the narrative conceit
that the player was adding some sort of serum to the plant in
question which made it grow and shrink. Ultimately, this was
simplified by including in the game fiction the notion that the
player is examining different “growth phases” of the plant,
implying that the player is looking at slides containing speci-
mens of the same plant at different stages of maturity.

V. Data Structures Implemented in Xylem

In Xylem: The Code of Plants, the player takes on the
role of a field botanist in the 1920’s, working with others to
build a plant taxonomy for the unusual flora endemic to the
island of Miraflora. While in the field, the player is equipped
with a Flora Phase Comparator (FloCom) which is an all-in-
one workstation for botanists.
A. How the FloCom Interface Conveys Loop Data

Players use the FloCom to compare a plant species in
different phases of growth and to note salient patterns of in-
florescence using mathematical symbols. Within the narrative
of the game, each plant species can be described succinctly
by a unique mathematical signature, which in game is called
an “observation.” Players collaborate to rank observations in
terms of how well they characterize the inflorescence pattern
across growth phases for a particular plant species.

The interface of the FloCom is divided into two main
sections. The top half displays a sequence of plant sheets,
meant to suggest the dried, pressed flower specimens which
are mounted to the pages of herbaria [2]. Each plant sheet

displays a specimen at a particular phase of a plant species’
growth. The sequence of plant sheets are imagined to dem-
onstrate the raw physical data, such as would be collected
by a field botanist. Interpreting that data is the task of the
player. The bottom half of the FloCom interface is dedicated
to providing the player a workspace to describe the sequence
of plant sheets using a basic mathematical vocabulary. To ex-
press observations, the player uses a tile set, similar to Scrab-
ble tiles or magnetic poetry, but with mathematical symbols
rather than letters or words. Expressions are developed us-
ing the common infix notation system, where operators are
placed in between two arguments and operations are ordered
in the conventional binding order for functions [3].

The FloCom interface allows a player to build loop in-
variants while getting dynamic feedback about the appropri-
ateness of the player’s input. The validity or partial validity of
a player generated observation is expressed via highlighting
of the entire plant sheet. If the player’s observation describes
a slide accurately, the sheet is highlighted green; otherwise,
the sheet is highlighted red. In the case when the values com-
pute to numbers outside the allowable range (Xylem allows
only integers, zero or greater but less than or equal to 99,999),
the plant sheet is highlighted yellow.

B. Visualizing Integer Variables and Values

The flowers on each specimen represent quantities
through the use of a positional notation system, where the
lesser orders of magnitude are represented nearer to the main
stem of the plant.

Fig. 2b provides an example of how two values are rep-
resented in game. Here the values for two variables are ex-
pressed at their fourth iteration: the red flower variable evalu-
ating to 32,768 and the cyan flower variable evaluating to
256. The values are visualized by successive stems support-
ing floral clusters; these stems are known as peduncles. The
longer and more weighted-down a peduncle, the greater order
of magnitude it represents.
C. Visualizing Array Variables and Values

For loops that perform operations on array data struc-
tures, the botanical metaphor is further extended by introduc-
ing the conceit of a root system. In such problems, the plant
page is split into two regions separated by a “soil-level line”:
above the line, the flowering peduncles convey the values for
each variable while below, a set of lateral roots conveys the
state of an array at a given loop iteration. The index variable
of an array is represented here as distances from the tap root
along a lateral root. Within the context of the narrative, on
the lower half of the plant sheet the root system is mounted

Fig. 1 How Xylem conveys loop data. (a) Hypothetical “for” loop – the mechanics of a loop would, in fact, be unknown to Xylem and the player. We
include it here to facilitate the example. (b) Trace of “for” loop, showing the mapping between loop variable to “flower variables.” (c) In game representation
of loop data.

i () 1 2 3 4

a () 4 16 256 65536

b () 6 24 384 98304

c () 4 16 256 65536

d () 4 16 256 65536

a = 2; b = 2/3; c = 2; d = 2;

for (i = 1; i<= 4; i++){
a = a * c;
d = a;
c = d;
b = b * 2^(2^i);

}
	

(a) Hypothetical “for” loop (c) The main gameplay screen (FloCom)

(b) Values of loop variables after each iteration

to allow the player to perform a line-intercept sampling [1],
whereby root hairs are sampled if a line segment, called a
“transect,” intersects the root hair. The transects are enumer-
ated on the ruler graphic, whose labels occur at inch intervals
and correspond directly to the index variable of the array. At
each transect, a lateral root will display the number of root
hairs on that root at that transect – these numbers coincide
with the array values.

For many algorithms a useful loop invariant might only
describe a portion of an array – such is the case with many
sorting algorithms, where one might want to specify that the
entries to the left of a pointer variable are “sorted.” In order
to allow players a way to specify the values within a range of
indices, a curly bracket object is included to accompany each
lateral root. The curly brackets visually show which array
indices are referenced in terms of the player’s observation.
Array puzzles also include additional tiles and game panels
to allow a player a means to symbolically describe a ranges
of indices. See Fig. 4 for a solved example.

To tie this to the calculus of invariants: each array vari-
able is paired with a single universally quantified integer
variable which ranges over the length of the array; the in-
variant applies if this integer is within the array’s bounds.
By pressing a button on their FloCom, players can slide in
a distinct equation-defining board with this quantified vari-
able in the center and lower and upper bounds on the left and
right sides. In this way, players define the sub-array for which
their invariant holds. Our interface is currently restricted to
contiguous ranges, but one can imagine the inclusion of tiles
yielding Boolean truth values to express more complex quan-
tification.

 VI. Special Challenges
While deciding on the plant metaphor, two representa-

tional challenges emerged.
A. Negative Numbers

Although negative numbers are not implemented in the
current version of Xylem, multiple solutions to this design
problem were developed. One of these solutions depended
on representing negative numbers as a damaged version of a
plant feature. For example, in a problem with two variables
represented as different colored flowers, a negative value
would be conveyed with one set of flowers that was brown or
wilted. Another visual solution to this potential problem was
to show positive numbers as plant features growing from up-
turned branches of the plant, and negative numbers as features
growing from downturned branches (in botany this is known
as phototropic and pendulous morphology, respectively).
B. Very Large Numbers

Since the proposal for the Xylem visualization scheme
is based on literally representing a number onscreen as dis-
tinct plant features (flowers, leaves, etc.), the question arose
of how to handle very large numbers. Some loops in the game
use numbers in the thousands. How many flowers could be
possibly readable to the player at one time?

Since we had already decided to present a number on
screen for each variable to make it easier for some players to
discern patterns, we decided to take a more abstract approach.
We realized that showing a precise number of features was
less valuable than giving a player a quick visual indication of
whether the numbers were going up or down, and their rela-
tion to other variables in the loop. Simply showing a blob of

e f g h

k
j

i

d
ca b

Fig. 2. The Flora Phase Comparator. The upper half, Plant Sheets: (a)
growth Phase indicator lights – green: a valid observation; red: an invalid
observation; yellow: an observation that evaluates out of bounds, (b) a
rendered plant (c) growth phase number, highlighted yellow to indicate a
value outside the bounds, (d) flower-variables and their corresponding val-
ues. The lower half, the Observation Bed – (e) number input tile, (f) index
variable tile, (g) flower variable tiles, (h) bonus tiles – represent the initial
values of the loop variables, (i) relational tiles, (j) operator tiles.

Fig. 3. Visualizing Array Variables and Values. (a) The top-half of the
Plant Sheet as described in Fig. 2. (b) The root system, displays array
values and indices. (c) The curly bracket object, visually shows the range
to be considered by the array variable. (d) An array value and its index. (e)
The array variable panel, supports up to two arrays. (f) By default the array
variable references all values within a specified range. In this example, the
array variable includes only the 2nd index. So, here the invariant can be
read: “For all iterations, the value at the 2nd index of the array Root 1 is
equal to the yellow flower variable.”

e
f

c

a

b

d

color with slight delineations when the numbers became too
high was suggested, however we still wanted an approach
that was consistent. We therefore used a combination of flow-
er position and number to create a sort of flower “code” that
could be used to display any number up to 99,999.

VII. Using Plants to Represent
Other Data Structures

In the deployed version of Xylem, we were able to rep-
resent loops containing integer variables, and integer linked
list variables. However, the plant metaphor used in Xylem
has substantial representational flexibility, and is capable of
handling additional types of data structures, even though they
were not implemented. These are described below.

Linked lists, stacks and queues can all be represented in
a similar fashion to the linear arrays that are currently in Xy-
lem. The “array length” tool may not be appropriate for these
data structures due to the way lists, stacks and queues are
more plastic in this dimension than arrays. A new way to de-
scribe the length of these structures would therefore have to
be investigated. Additional plant features could be added to
roots to represent more information about the data contained
in the data structure.

One way to visualize a two dimensional array is as a
flowering shrub. The array is mapped as a grid over the shrub,
and each cell of the array contains a discrete number of plant
features such as flowers and leaves which represent data con-
tained at each array index.

Tree data structures can be represented by plant kingdom
trees, which have many possible features (leaves, cones, fruit,
flowers, etc.) that can be used to represent types of informa-
tion contained by the data tree.

From a side view, rhizomatous plants appear to be a lin-
ear structure. When viewed from the top down however, it
becomes clear that actually they grow spread out over a large
area. Diagrams of rhizomatous plants from a bird’s eye view
strongly resemble abstract depictions of graph data struc-
tures. The “crowns” of these plants (where the above-ground
part of the plant comes through the soil) can have a variety
of features that can be used to describe data, such as shoots,
leaves, flowers, etc.

VIII. Future Work

In addition to the above standard data structures, a spec-
ulative modular design was created to handle any arbitrary
data structure that might find its way into the game.

Complex data structures tend to have multiple combina-
tions of primitive data structures, such as a tree where leaves
are lists, or lists of lists. The plant metaphor provides two
approaches to this problem. First, a berry bush can visualize
complex data structures, especially ones where the structure
is not known a priori. Data nodes are mapped to berries. Links
between nodes are berry stems and vines. These stems and
vines do not have to conform to botanical rules; they can be
constructed purely based on the needs of the data structure.
Currently accessible nodes are represented by ripe berries,
whereas nodes not currently accessible are shown as fruit that
is not yet ripe. If necessary, different levels of ripeness can be
employed to give the player further information.

An alternate approach is to adopt a zooming scheme,
where players zoom into and out of different plant features,
to uncover data at different levels of resolution. A botanical
tree, for example, may grow a flower which in itself repre-
sents a node on the data tree containing an array, with vari-

Fig. 4. Specifying dynamic ranges. The array variable here references a range of indices specified in the range editor panel. To edit the array index range,
players can toggle the range editor panel. (a) The “observation” here reads: every array entry within a specified range is undefined. (b) The range editor panel
is used to constrain the indices. Here the range of indices is related to the loop iteration number, specifically, describing one fewer array entry each iteration.

(a) (b)

ables represented by number of petals, visible seeds, stamen,
etc. This approach requires some foreknowledge of the kinds
of data structures involved, so appropriate visualizations can
be selected at each layer.

The value of a project like Xylem increases when it is
able to represent very complex loops which manipulate com-
plex data structures, as simpler loops can often have their
invariants discovered by automatic techniques. As loops
become more complex, the ability for automatic systems
to solve them goes down, and the utility of having human
solvers increases. However, this requires representing a wide
range of complex data structures. Xylem, in its current ver-
sion, is a start at solving this more complex problem, for just
simple integer loops, and array/list data structures. Research
into more complex data structures such as trees and graphs
is needed.

IX. Conclusion

Games that require a faithful depiction of computer soft-
ware face challenging visual representation issues. Xylem:
The Code of Plants needed to visually represent loops, in-
teger variables, and lists of integers, all using a consistent
visual metaphor that was appealing to a casual game audi-
ence. The approach adopted of using a plant and flower meta-
phor has sufficient expressive range to represent a wide range
of loop examples. Xylem has had over 2,100 downloads to
date, a respectable showing for a research game. While these
players (who are anonymous due to project constraints) have
not been surveyed as to their reaction to the visualization ap-
proach in Xylem, there is anecdotal evidence that audiences
who are not likely to be pulled into a mathematical game
were attracted by the game’s botanical theme and enjoyed the
experience of making discoveries about virtual flowers [15],
(although reviews were not universally positive [17]).

Our core contribution is a visual representation of loops,
integers and lists that is narratively coherent, and moves be-
yond the traditional boxes and arrows visual representation.
This visual metaphor holds promise for use in other future
software games – both those meant to aid in computer sci-
ence problems and those meant to teach computer science
concepts. Our hope is this will shift thinking about how to
visualize data structures and algorithms away from purely
utilitarian representations and into more expressive and ap-
pealing ones.

References

Kaiser, L, Unbiased Estimation in Line-Intercept Sampling, [1]	
Biometrics 39. pp 965–976. 1983.

Bridson, Diane M., and Leonard Forman. [2]	 The Herbarium
Handbook. Kew: Royal Botanic Gardens, 1992.

Baber, Robert, L. [3]	 The Language of Mathematics. John Wiley
& Sons, 2011.

Floyd, R. W. Assigning meanings to programs. Mathematical [4]	

aspects of computer science, 1967.

Diehl, Stephan. [5]	 Software visualization: visualizing the struc-
ture, behaviour, and evolution of software. Springer, 2007.

Furia, Carlo A., Bertrand Meyer, and Sergey Velder. “Loop [6]	
invariants: Analysis, classification, and examples.” ACM Com-
puting Surveys (CSUR) vol. 46, 3. 2014.

Baecker, Ronald M., with the assistance of David Sherman, [7]	
“Sorting Out Sorting”, 30 minute color sound film, Dynamic
Graphics Project, University of Toronto, 1981.

Eagle, Michael, and Tiffany Barnes. “Wu’s castle: teaching ar-[8]	
rays and loops in a game.” ACM SIGCSE Bulletin. Vol. 40. No.
3. ACM, 2008.

Boyce, Acey, and Tiffany Barnes. “BeadLoom Game: using [9]	
game elements to increase motivation and learning.” Proc.
of the Fifth Int’l Conference on the Foundations of Digital
Games. 2010.

Astrachan, Owen. Pictures as invariants. [10]	 ACM SIGCSE Bul-
letin. Vol. 23. No. 1. ACM, 1991.

Ginat, David. “Loop invariants and mathematical games.” [11]	
ACM SIGCSE Bulletin. Vol. 27. No. 1. ACM, 1995.

Shaffer, Clifford A., Cooper, Matthew L., Alon, Alexander [12]	
Joel D., Akbar, Monika, Stewart, Michael, Ponce, Sean, and
Edwards, Stephen H., “Algorithm Visualization: The State of
the Field.” ACM Trans. Computing Education, Vol. 10, No. 3,
Article 9, August 2010.

Price, Blaine A., Baecker, Ronald M., Small, Ian S., “A Prin-[13]	
cipled Taxonomy of Software Visualization.” Journal of Visual
Languages and Computing, Vol. 4, No. 3, Sept. 1993.

Tillmann, Nikolai, Jonathan De Halleux, Tao Xie, Sumit Gul-[14]	
wani, and Judith Bishop, “Teaching and Learning Program-
ming and Software Engineering via Interactive Gaming.” Proc.
35th International Conference on Software Engineering (ICSE
2013), Software Engineering Education (SEE), May 2013.

Rosenthal, Anne M. “Xylem: The Code of Plants.” SFNature [15]	
On Assignment. 2 Jan. 2014. Web. 30 Jan 2015. <http://www.
sfnatureblog.com/2014/01/xylem-code-of-plants.html>.

Logas, Heather, Whitehead, Jim, Mateas, Michael, Vallejos, [16]	
Richard, Scott, Lauren, Murray, John, et al. “Software verifica-
tion games: designing Xylem, the code of plants.” Foundations
of Digital Games, 2014.

Wang, Vincent. “’Xylem: The Code of Plants’—a (mostly [17]	
negative) review.” The Revolver’s Notepad. 8 Mar 2014. Web.
27 Feb 2015. <http://www.pi-identity.com/blog/2014/03/08/
xylem-the-code-of-plants-a-mostly-negative-review/>.

Dietl, Werner, Dietzel, Stephanie Dietzel, Michael D. Ernst, [18]	
Nathaniel Mote, Brian Walker, Seth Cooper, Timothy Pavlik,
and Zoran Popović, “Verification games: Making verification
fun.” Proc. of the 14th Workshop on Formal Techniques for
Java-like Programs. (Beijing, China), June 12, 2012.

