
Effective R Programming

Jacob Colvin

February 21, 2009

Jacob Colvin () Effective R Programming February 21, 2009 1 / 21

1 Introduction
Motivation

2 R Concepts
Language Details

3 Debuging

4 Profiling
Tidying R Code

5 Good Code, Bad Code
Vectorize!
Cumulative Sum
DP Code
MCMC without Loops!

6 Conclusion

Jacob Colvin () Effective R Programming February 21, 2009 2 / 21

Motivation

Dispell the myth that R is slower the C/Fortran.

As long as you don’t program in R like you did in C/Fortran.
As long as your code is not very serial like cumsum().

Be more productive by learning how to correctly program & debug in
R.

How to debug without resorting to print() statements.
How to profile your code to find out why it is actually slow so you
don’t bother optimizing the wrong parts.

Jacob Colvin () Effective R Programming February 21, 2009 3 / 21

Language Details

R is a scripting language, so it takes a lot of work to go from one
command to another compared to a compiled language.

So in R you need to avoid for loops and try and do as much work as
possible in each command.

For complex commands, R will call the same fortran code, like BLAS,
as a native Fortran program would.

Might be more worth your time to tune R with better BLAS libraries
like perhaps the ATLAS ones.

R functions are semantically “call by value”, but are implemented in a
“copy on write” fashion.

Hence no penalty for passing large objects in function arguments as
long as you don’t modify them.

Jacob Colvin () Effective R Programming February 21, 2009 4 / 21

Debuging: or how to not waste your time

See “Writing R Extensions” Chapter 4

traceback() or where did my program die?

browser() or why did my program die?

insert browser commands in code like this
if(sum(is.na(x)) > 0) browser()
Q for quit
[Return] to continue program exection untill possibly the next call to
browser()

Jacob Colvin () Effective R Programming February 21, 2009 5 / 21

Debug Session Example

> x=matrix(rnorm(12),nrow=2)
> apply(x,1,function(y){browser();sum(y)})
Called from: FUN(newX[, i], ...)
Browse[1]> x

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.3290968 0.618234 0.4220994 -0.9335046 -1.07675500 0.3365174
[2,] 0.6961244 -1.148550 1.4818257 1.0544334 0.07863615 1.8111323
Browse[1]> y
[1] 0.3290968 0.6182340 0.4220994 -0.9335046 -1.0767550 0.3365174
Browse[1]>
Called from: FUN(newX[, i], ...)
Browse[1]> y
[1] 0.69612441 -1.14854997 1.48182574 1.05443341 0.07863615 1.81113234
Browse[1]>
[1] -0.3043121 3.9736021
>

Jacob Colvin () Effective R Programming February 21, 2009 6 / 21

Profiling: or how to not waste your time

See “Writing R Extensions” Chapter 3

> Rprof("boot.out")
> x = mcmc(Itr=1e6)
> Rprof(NULL)

Followed by this at the command prompt:

:> R CMD Rprof boot.out

A quick and dirty version would be use system.time(), but note the use
of the <- operator

> system.time(x <- mcmc(Itr=1e6))
user system elapsed
3.444 0.008 3.482

Jacob Colvin () Effective R Programming February 21, 2009 7 / 21

Tidying R Code

Say you are given code that was never indented, and/or you want to
remove all the comments.

> options(keep.source = FALSE)
> source("myfuns.R")
> dump(ls(all = TRUE), file = "new.myfuns.R")

If you really want to add all of the comments back, you can use a merge
tool like Kdiff3 to make it happen.

Jacob Colvin () Effective R Programming February 21, 2009 8 / 21

Vectorize

N=1000000
f=function() {
x=numeric(N)
for(i in 1:N)
x[i]=runif(1)

}
g=function() x=runif(N)

> system.time(f())
user system elapsed
14.345 0.032 14.522
> system.time(g())
user system elapsed
0.108 0.012 0.122

120X improvement in the vector version!

Jacob Colvin () Effective R Programming February 21, 2009 9 / 21

Cumulative Sum

noloop=function(x){
gen.iter = function(y=0)
function(x)
y <<- x+y

sapply(x,gen.iter())
}

loop = function(x) {
for(i in 2:length(x))
x[i] = x[i] + x[i-1]

x
}

> rep(c(-1,1),1e6)->x
> system.time(noloop(x)->x1)

user system elapsed
25.249 0.032 25.350

> system.time(loop(x)->x2)
user system elapsed

13.885 0.060 13.981
> system.time(cumsum(x)->x3)

user system elapsed
0.052 0.000 0.054

Jacob Colvin () Effective R Programming February 21, 2009 10 / 21

DP Code 1

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.1 = function(y,n=1000,alpha=1) {
z = rbeta(n,1,alpha)
w = numeric(length(z))
w[1] = z[1]
for(i in 2:length(z))
w[i] = z[i] *prod(1-z[1:(i-1)])

w
}
10000 iterations

user system elapsed
425.2 0.4 426.5

Jacob Colvin () Effective R Programming February 21, 2009 11 / 21

DP Code 2

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.2 = function(y,n=1000,alpha=1) {
z = rbeta(n,1,alpha)
w = numeric(length(z))
w[1] = z[1]
for(i in 2:length(z))
w[i] = z[i] * w[i-1] / z[i-1] * (1-z[i-1])

w
}
10000 iterations

user system elapsed
137.521 0.220 139.714

Jacob Colvin () Effective R Programming February 21, 2009 12 / 21

DP Code 3

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.3 = function(y,n=1000,alpha=1) {
z = rbeta(n,1,alpha)
z/(1-z)*cumprod(1-z)

}
10000 iterations

user system elapsed
7.392 0.248 7.671

Jacob Colvin () Effective R Programming February 21, 2009 13 / 21

DP Code 4

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.4 = function(y,n=1000,alpha=1) {
z = rbeta(n,1,alpha)
z * c(1, cumprod(1-z[-length(z)]))

}
10000 iterations

user system elapsed
7.613 0.124 7.7

Jacob Colvin () Effective R Programming February 21, 2009 14 / 21

DP Code 5

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.5 = function(y,n=1000,alpha=1) {
z = rbeta(n,1,alpha)
z/(1-z)*exp(cumsum(log(1-z)))

}
10000 iterations

user system elapsed
10.253 0.104 10.524

Jacob Colvin () Effective R Programming February 21, 2009 15 / 21

DP Code 6

ω1 = z1

ωi = zi

i−1∏
j=1

(1− zj)

dp.stick.6 = function(y,n=1000,alpha=1) {
zz = rbeta(n,alpha,1)
(1-zz)/zz*exp(cumsum(log(zz)))

}
10000 iterations

user system elapsed
10.117 0.108 10.24

Jacob Colvin () Effective R Programming February 21, 2009 16 / 21

MCMC With Loops

gibbs.loop.1 = function (Itr=1e5, rho=0.5) {
mat <- matrix(ncol = Itr, nrow = 2)
x0 <- 0; y0 <- 0; mat[,1] <- c(x0, y0)
for (i in 2:Itr) {
mat[1,i] <- rnorm(1, rho * mat[2,i-1], sqrt(1 - rho^2))
mat[2,i] <- rnorm(1, rho * mat[1,i], sqrt(1 - rho^2))

}
mat

}
> system.time(gibbs.loop.1()->g1)

user system elapsed
4.956 0.000 4.981

Jacob Colvin () Effective R Programming February 21, 2009 17 / 21

Faster MCMC With Loops

gibbs.loop.2 = function (Itr=1e5, rho=0.5) {
mat <- matrix(ncol = Itr, nrow = 2)
x0 <- 0
y0 <- 0
mat[,1] <- c(x0, y0)
for (i in 2:Itr) {
x0 <- rnorm(1, rho * y0, sqrt(1 - rho^2))
y0 <- rnorm(1, rho * x0, sqrt(1 - rho^2))
mat[,i] = c(x0,y0)

}
mat

}
> system.time(gibbs.loop.2()->g2)

user system elapsed
3.764 0.004 3.779

Jacob Colvin () Effective R Programming February 21, 2009 18 / 21

Fastest MCMC Without Loops

gibbs.noloop = function(Itr=1e5, rho=0.5)
{
gen.gibbs.iter = function(x=0, y=0) # x and y are used as "closures"
function(t) { # defines what happens inside a MCMC iteration
y <<- rnorm(1,rho*y, sqrt(1-rho^2)) # basically <- is for dynamic scoping
x <<- rnorm(1,rho*x, sqrt(1-rho^2)) # and <<- is for static scoping
c(x,y)

}
sapply(integer(Itr),gen.gibbs.iter())

}
> system.time(gibbs.noloop()->g3)

user system elapsed
3.444 0.008 3.482

Jacob Colvin () Effective R Programming February 21, 2009 19 / 21

big example

:~/R.prog.tutorial$ R CMD Rprof mcmc.out

Each sample represents 0.02 seconds.
Total run time: 3.86 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.

% total % self
total seconds self seconds name
97.41 3.76 0.00 0.00 "gibbs.noloop"
97.41 3.76 0.00 0.00 "sapply"
96.89 3.74 5.70 0.22 "lapply"
91.19 3.52 14.51 0.56 "FUN"
76.68 2.96 70.47 2.72 "rnorm"
5.18 0.20 0.52 0.02 "unlist"
4.66 0.18 0.00 0.00 "unique"

...
% self % total

self seconds total seconds name
70.47 2.72 76.68 2.96 "rnorm"
14.51 0.56 91.19 3.52 "FUN"
5.70 0.22 96.89 3.74 "lapply"
2.59 0.10 2.59 0.10 "*"

...

Jacob Colvin () Effective R Programming February 21, 2009 20 / 21

Conclusion

R is amazing, and if you do something else you are probably wasting
your time.

Use R to prototype your projects, and later, if necissary, reimplement
the slow functions in C/Fortran

How to call C/Fortran code from R would be a good talk for the
future, if I ever find a pressing reason to learn how myself.

Learn how to use the apply family of functions.

Consider this...

What is the ratio of the time spent programming over time spent
running the program?

I bet it is over 10, maybe more like 100.

So who cares how slow R is if you can cut programming time in half?

Jacob Colvin () Effective R Programming February 21, 2009 21 / 21

	Outline
	Introduction
	Motivation

	R Concepts
	Language Details

	Debuging
	Profiling
	Tidying R Code

	Good Code, Bad Code
	Vectorize!
	Cumulative Sum
	DP Code
	MCMC without Loops!

	Conclusion

