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ABSTRACT
We present a new, robust and computationally efficient Hier-
archical Bayesian model for effective topic correlation mod-
eling. We model the prior distribution of topics by a Gen-
eralized Dirichlet distribution (GD) rather than a Dirichlet
distribution as in Latent Dirichlet Allocation (LDA). We de-
fine this model as GD-LDA. This framework captures cor-
relations between topics, as in the Correlated Topic Model
(CTM) and Pachinko Allocation Model (PAM), and is faster
to infer than CTM and PAM. GD-LDA is effective to avoid
over-fitting as the number of topics is increased. As a tree
model, it accommodates the most important set of topics in
the upper part of the tree based on their probability mass.
Thus, GD-LDA provides the ability to choose significant
topics effectively. To discover topic relationships, we per-
form hyper-parameter estimation based on Monte Carlo EM
Estimation. We provide results using Empirical Likelihood
(EL) in 4 public datasets from TREC and NIPS. Then, we
present the performance of GD-LDA in ad hoc information
retrieval (IR) based on MAP, P@10, and Discounted Gain.
We discuss an empirical comparison of the fitting time. We
demonstrate significant improvement over CTM, LDA, and
PAM for EL estimation. For all the IR measures, GD-LDA
shows higher performance than LDA, the dominant topic
model in IR. All these improvements with a small increase
in fitting time than LDA, as opposed to CTM and PAM.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Document Filtering ; G.3 [Probability
and Statistics]: Statistical Computing

General Terms
Algorithms, Experimentation

Keywords
Statistical Topic Modeling, Document Representation
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1. INTRODUCTION
Topic modeling has been widely studied in Machine Learn-

ing and Text Mining as an effective approach to extract
latent topics from unstructured text documents. The key
idea underlying topic modeling is to use term co-occurrences
in documents to discover associations between those terms.
The development of Latent Dirichlet Allocation (LDA) [3, 8]
enabled the rigorous prediction of new documents first time.
Consequently, variants and extensions of LDA have been an
active area of research in topic modeling. This research has
2 main streams in document representation: 1) The explo-
ration of super and subtopics as in Pachinko Model Alloca-
tion (PAM) [9, 10]; and 2) the correlation of topics [2, 9, 10].
However, despite the improvement of these approaches over
LDA, they are rarely used in applications that handle large
datasets, such as Information Retrieval. Major gaps in these
models include: modeling correlated topics in a computa-
tionally effective manner; and a robust approach to ensure
good performance for a wide range of document numbers,
vocabulary size and average word length per document.

In this paper we develop a new model to meet these needs.
We use the Generalized Dirichlet (GD) distribution as a
prior distribution of the document topic mixtures, leading
to GD-LDA. We show that the Dirichlet distribution is a
special case of GD. As a result, GD-LDA is deemed to be
a generalized case of LDA. Our goal is to provide a more
flexible model for topics while retaining the conjugacy prop-
erties, which are desirable in inference. The features of the
GD-LDAmodel include: 1) An effective method to represent
sparse topic correlations in natural language documents. 2)
A model which handles global topic correlations with time
complexity O(KW ), adding minimal computational cost re-
spect to LDA. This results in a fast and robust approach
compared to CTM and PAM. 3) A hierarchical tree struc-
ture that accommodates the most significant topics, based
on probability mass, at the upper levels allowing us to reduce
the number of topics efficiently. Note that GD is a special
case of Dirichlet Trees [13, 5]. This distribution has been
used previously in topic modeling to add domain knowledge
to the probability of words given a topic [1]. In contrast, we
use the GD distribution to model topic correlations. Thus,
this approach is complementary to GD-LDA.

To validate our model, we use Empirical Likelihood (EL)
in four data sets with different characteristics of document
length, vocabulary size, and total number of documents.
GD-LDA outperforms CTM, PAM and LDA consistently
in all the datasets. In addition, we test the performance of
GD-LDA in adhoc Information Retrieval, obtaining superior



Figure 1: Tree structure of the GD distribution.

results to those in the literature. We show a significant dif-
ference in running times between GD-LDA, CTM and PAM
which makes GD-LDA as viable as LDA for large data sets.

This paper is organized as follows: In section 2, we present
the definition and features of the GD distribution. We will
use this definition to develop the methodology of the GD-
LDA model. Section 3 depicts our proposed approach with
the proper derivations. Validation criteria, experimental set-
tings, and results are presented in section 4. Finally the
discussion and conclusion are presented in section 5.

2. THE GENERALIZED DIRICHLET DIS-
TRIBUTION

2.1 Properties and Intuition
The Generalized Dirichlet (GD) distribution was intro-

duced by Connor and Mosimann in [4]. The GD distribution
is motivated by the limitations of the Dirichlet distribution
in modeling covariances. In the case of the Dirichlet dis-
tribution, all the entries of the random vector must share
a common variance, and they must sum to one. When we
use the Dirichlet distribution as a prior for the multinomial
distribution we have only one degree of freedom, the total
prior sample size, to incorporate our confidence in the prior
knowledge. As a consequence, we can not add individual
variance information for each entry of the random vector.
In addition, all entries are always negatively correlated. In
other words, if the probability of one entry increases each of
the other probabilities must either decrease or remain the
same to sum to one. Despite these limitations, the Dirich-
let distribution is widely used given that this is a conjugate
prior of the multinomial distribution.

The GD distribution allows us to sample each entry of the
random vector of proportions from independent Beta distri-
butions. This independence is the key property that pro-
vides more flexibility than the Dirichlet distribution. For-
mally this distribution is defined as:

p(θ|α, β) =

K−1
∏

j=1

Γ(αj + βj)

Γ(αj )Γ(βj)
θ
αj−1

j
(1− θ1 − · · · − θj)

ηj (1)

where θ1 + θ2 + . . .+ θK−1 + θK = 1, ηj = βj −αj+1 − βj+1

for 1 ≤ j ≤ K − 2 and ηK−1 = βK−1 − 1.
To illustrate the properties of the GD distribution we de-

fine Z1 = θ1 and Zk = θk/Vk for k = 2, 3, . . . ,K − 1 where
Vk = 1−θ1−· · ·−θk−1. Let Tk be the discrete random vari-
able with multinomial distribution with parameter θ1 . . . θK
for K different categories. We start at node V1, and at this
node we sample T1 with probability Z1 and V2 with proba-
bility 1 − Z1. Conditional on V2, we sample T2 with prob-
ability Z2 and V3 with probability 1 − Z2. In the general
case, conditional on Vk, we sample Tk with probability Zk

and Vk+1 with probability 1− Zk for k = 1 . . .K − 1. If we
now add a prior Beta distribution with parameters αk, βk for

each conditional Binomial distribution of the nodes Vk, we
have a GD distribution where this set of Beta distributions
is conjugate to the set of Binomial distributions.

Zk ∼ Beta(αk , βk) Tk ∼ Bin(Zk , Nk) for Nk = N −
∑

i<k Ti

(2)

where N is the total number of observations and Nk is the
number of observations remaining from previous categories
in the tree[20].

The GD distribution is a special case of the Dirichlet Tree
distribution [13, 5] where a cascade hierarchy is employed
in the generative process of the distribution. To interpret
the parameters of the GD distribution we refer to its tree
representation shown in Fig 1. Conditional on Vk, αk is the
sample size assigned to the discrete output Tk, and βk is
the sample size assigned to the next level in the tree. If
βk is too small compared to αk, we could discard the rest
of the tree. This is a desirable property as it facilitates
dimensionality reduction in the number of topics. By set-
ting βk = αk+1 + βk+1, βK−1 = αK , we obtain a Dirichlet
distribution. This is why GD distribution ”generalizes” the
Dirichlet distribution [4]. Although a general Dirichlet Tree
structure that is inferred by data is highly appealing, in
practice this structure determines the number and proper-
ties of the parameters to fit. Thus, the tree must be fixed
before inferring the model [13, 14]. A key property of the GD
cascade structure is that it facilitates topic reduction. This
is because the tree can be pruned based on the conditional
probability of going to the following level.

The GD distribution is a conjugate prior distribution to
the Multinomial distribution, then we can integrate out the
parameter of the Multinomial distribution leading to:

p(T |α, β) =

∫

p(T |θ)p(θ)dθ =

K−1
∏

k=1

Γ(αk + βk)

Γ(αk)Γ(βk)

K−1
∏

k=1

Γ(α′

k) + Γ(β′

k)

Γ(α′

k
+ β′

k
)

(3)

where α′

k = αk+Tk, β
′

k = βk+Tk+1+...+TK . The ability to
estimate this integral in closed form is crucial for GD-LDA
model because this enables us to perform Gibbs sampling.
This is the product of Beta-Binomial distributions for Zk

independent random variables. As a result, this expression
is factorized into independent ratios of Gamma functions ,
which allows us to find the Maximum Likelihood Estimation
(MLE) of α, β in a simple manner (independently) which is
not the case of the Dirichlet distribution.

2.2 Covariances: Properties and Constraints
In natural language documents, most of the times only

a few topics co-occur leading to sparse topic correlations
[19]. This implies that a very few random topics may suffice,
rather than the full joint distribution including all the topics.

When considering useful distributions for topic modeling,
a desirable feature is to model only a few topics in a doc-
ument. For instance, the topic domestic politics could fre-
quently co-occur with middle east politics and health care

reform. This implies that if we observe domestic politics,
the conditional probabilities of observingmiddle east politics

and health care reform will increase. However, if a document
contains domestic politics and middle east politics, it could
very rarely contain health care reform.

GD has the computational advantage of only having 2K−
1 parameters. This also implies that the distribution covari-
ances are constrained. The question is whether it is possible
that these constraints imply that only a few topics co-occur



Algorithm 1 GD-LDA Generative Model
for topic k← 1 to K do

draw φk ∼ Dir(γ)
end for

for document j ← 1 to D do

draw θj ∼ GenDir(α, β)
for word w ← 1 to Nj do

draw zwj ∼ Mult(θj)
draw w|zwj = k ∼ Mult(φk)

end for

end for

Figure 2: Graphical Model for GD-LDA. α and β are

vectors of size K − 1 where K is the number of topics. γ

is a vector of size V (vocabulary size).

in a document. In this respect, the covariance properties de-
scribed in Appendix A.1, particularly the third one, indicate
that the covariances are dependent on the expected value of
two topics, then several covariances might be close to zero
if the right hand side ratio is small. This is an important
feature of the GD distribution which we propose to exploit
in topic modeling. A detailed discussion of the covariance
constraints of GD distribution is provided in Appendix A.

3. GD-LDA: METHODOLOGY
In this section, we depict the parameter estimation pro-

cess to fit the GD as a prior distribution for topics. We show
that GD-LDA can be computed with a computational cost
similar to that of LDA. Fig 2 shows the graphical model
for GD-LDA and its generative model is described in Algo-
rithm 1. We follow a Monte Carlo Expectation Maximiza-
tion (MCEM) approach to fit our model. Conditional on the
hyper-parameters, we develop a Gibbs sampling approach
to infer the topic assignments to each word in the corpus.
Then, assuming that the topic assignment expectations as
given, we optimize the hyper-parameters of the model.

3.1 Notation
Let K be the number of topics, D the number of docu-

ments, and V the vocabulary size. We use the indices: i to
denote a word or term index in the vocabulary, k to denote
a specific topic, j to refer to a document, and w to identify a
specific observed word. Ni,k defines the number of observed
words which correspond to term i and have been assigned
to topic k. Nj,k is the frequency of topic k in document j.
We refer to p(w, z|·) as the joint probability of all the words
w in the corpus and their topic assignments z. γ represents
a vector of size V . α and β are vectors of size K − 1.

3.2 Model and Gibbs Sampling
We define the joint probability associated with the graph-

ical model defined in Fig 2 with joint distribution:

p(w, z|α, β, γ) = p(w|z, γ)p(z|α, β) (4)

This expression allows us to decompose the problem into two
hierarchical models that can be treated and optimized sep-
arately based on these conditional probabilities. The prob-
ability of words given topics is:

p (w|z, γ) =

∫

φ

p (w|φ, z) p (φ|γ, z) dφ =

K
∏

k=1

Γ(
∑V

i=1
γi)

∏V
i=1

Γ(γi)

∏V
i=1

Γ(γi +Nk,i)

Γ(
∑V

i=1
(γi +Nk,i))

(5)

For the probability of topics, we have a GD prior distribution
for the topic mixtures in each document which is assumed
to be Multinomial. Thus we have:

p(z|α, β) =

∫

θ

p (z|θ) p (θ|α, β) dθ =

D
∏

j=1

K−1
∏

k=1

Γ(αk + βk)

Γ(αk)Γ(βk)

K−1
∏

k=1

Γ(αj
k
) + Γ(βj

k
)

Γ(αj
k
+ β

j
k
)

(6)

where αj
k = αk +Nj,k, β

j
k = βk +Nj,k+1 + ...+Nj,K .

The topic assignments z are not observed. Then, we define
a Gibbs sampling method to infer z as follows:

p(zwj = k|z¬wj , α, β, γ) =
p(w|z, γ)p(z|α, β)

p(w|z¬wj , γ)p(z¬wj |α, β)
(7)

Here, z¬wj represents the topic assignments for all the words
except the word w from document j. This analysis leads us
to the following distributions for Gibbs sampling:

p(w|z, γ)

p(w|z¬wj, γ)
∝

N
¬wj
i,k

+ γi
∑V

i=1

(

N
¬wj
i,k

+ γi

) (8)

p(z|α, β)

p(z
¬wj
|α, β)

∝



























































αk + N¬wj

j,k

αk + βk +
∑

K
l=1 N¬wj

j,l

, k = 1

αk + N¬wj

j,k

αk + βk +
∑

K
l=k N¬wj

j,l

k−1
∏

m=1

βm +
∑K

l=m+1 N¬wj

j,l

αm + βm +
∑

K
l=m N¬wj

j,l

1 < k < K

K−1
∏

m=1

βm +
∑K

l=m+1 N¬wj

j,l

αm + βm +
∑

K
l=m N¬wj

j,l

k = K

(9)

In LDA, the topic distribution depends on αk alone for
the current topic k. Intuitively, if a new sample is assigned
to a topic k in LDA, there is no effect on the sampling distri-
bution of other topics. However, if a new sample is assigned
to a topic k in GD-LDA, it will affect other topics through
the evaluation of the product in Eq 9. The impact of this
assignment will depend on the parameters α, β.

Sampling from the distribution in Eq 9 results in a high
computational cost due to the cumulative product defined
there. Since this distribution is not standard, we need to
estimate its normalization constant. To perform this task
with a computational cost comparable to collapsed Gibbs
sampling in LDA [8], we compute the cumulative product
for each k > 1 iterations and pass it to the next iteration of
the evaluation. This is illustrated in Algorithm 2. From this
pseudo code, O((2K+1)W ) operations are required for each
Gibbs sampling draw for the whole corpus, where W is the
total number of words. Thus, the time complexity for each
iteration is O(KW ) as in the case of LDA [15]. This com-
plexity is possible due to the cascade structure of the GD



Algorithm 2 GD-LDA Gibbs Sampling

cumFactor ← 1, k← 1

CDF [k]←
αk + N¬wj

j,k

αk+βk+
∑K

l=1
N

¬wj
j,l

×
N

¬wj
i,k

+γi
∑V

i=1

(

N
¬wj
i,k

+γi

)

for k← 2 to K − 1 do

cumFactor ← cumFactor ×
βk−1+

∑K
l=k

N
¬wj
j,l

αk−1+βk−1+
∑K

l=k−1
N

¬wj
j,l

CDF [k] ← CDF [k − 1] + cumFactor ×
αk + N¬wj

j,k

αk+βk+
∑K

l=1
N

¬wj
j,l

×

N
¬wj
i,k

+γi
∑V

i=1

(

N
¬wj
i,k

+γi

)

end for

CDF [K]← CDF [K − 1] + cumFactor ×
N

¬wj
i,K

+γi
∑V

i=1

(

N
¬wj
i,K

+γi

)

distribution, which facilitates the calculation of the cumula-
tive factor in Algorithm 2. In contrast, the time complexity
of a Gibbs draw for PAM depends on the number of super-
topics, S, and sub-topics K as O(SKW ) [11]. The general
recommendation is to set S = K/21 leading to O(K2W ).

3.3 Parameter Estimation
Previous research has assumed uniform priors for the topic

mixtures θ and the vocabulary distribution for topics φ with-
out estimating them (constant values for α and γ) [8]. Wal-
lach et al. in [16] concludes that parameter estimation with
asymmetric Dirichlet prior probability of topics provides an
improvement in the fitting. In GD-LDA, we estimate the
parameters α, β of the GD distribution to discover topic cor-
relations. We estimate the parameters for the prior distri-
bution of words given topics γ. Ideally, we should maximize
the likelihood p(w|α, β, γ) for observations w and hyper-
parameters α, β, γ directly. Unfortunately, this distribution
is intractable for this model. To solve this issue, we aug-
ment the likelihood to p(w, z|α, β, γ) and use Monte Carlo
Expectation Maximization (MCEM) [18]. Conditional on
hyper-parameters α, β, γ, we use Gibbs sampling to esti-
mate the posterior topic assignment distribution for each
word (E-step). Then, given the expected topic assignments
and words, we optimize p(w, z|α, β, γ) (M-step). Algorithm
3 describes these iterations.

To fit γ, we maximize the joint distribution described in
Eq 5 conditional on the expected topic assignments, z =
E(z|α, β, γ), estimated from Gibbs sampling. Then we have
the following optimal function:

γnew = argmax
γ

K
∏

k=1

Γ(
∑V

i=1 γi)
∏

V
i=1 Γ(γi)

∏V
i=1 Γ(γi + Nk,i)

Γ(
∑

V
i=1(γi + Nk,i))

(10)

where: Nk,i = f(z)
We follow the Newton-based approach proposed by Minka

in Eqs 56-60 of [12]. Here, we have a DCM distribution to
fit from K observed vectors of dimension V . To initialize
the search, we use the method of moments based on the
observed proportions pk,i = Nk,i/

∑V

i=1
Nk,i.

Similarly, we estimate the parameters of the GD distribu-
tion by maximizing the joint distribution:

αnew, βnew = argmax
α,β

D
∏

j=1

K−1
∏

k=1

Γ(αk + βk)

Γ(αk)Γ(βk)

K−1
∏

k=1

Γ(αj

k
) + Γ(βj

k
)

Γ(αj

k
+ βj

k
)

(11)

1K/2 super-topics is the recommendation by Mallet toolbox,
http://mallet.cs.umass.edu/

Algorithm 3 Monte Carlo EM

Start with an initial guess for α, β, γ and z
repeat

Run Gibbs Sampling using Eqs. 8 and 9
Find Expected value for topic assignments E(z|α, β, γ) = z
Choose γ to maximize complete Likelihood Eqs 56-60 in [12]
Choose α, β that maximize complete Likelihood using Eq 27

until convergence of α, β, γ
Choose topic assignments z∗ with highest probability
Set α∗ = α, β∗ = β, γ∗ = γ
return α∗, β∗, γ∗, z∗

where αj
k = αk +N j,k, β

j
k = βk +N j,k+1 + ...+N j,K .

We develop a Newton-based method in Appendix B. To
initialize the search, we use the method of moments based
on the conditional beta distributions from the tree represen-
tation of the GD distribution [21]. The proportions pk,i =

Nk,i/
∑V

i=1
Nk,i are employed for this initialization.

One key component of this optimization is that each pair
αk, βk is optimized separately. Thus, the time complexity for
this optimization is linear in time with K. Parameter fitting
in PAM is performed using the method of moments due
the high model complexity and computational cost of the
optimization [10, 11]. In addition, the number of parameters
to fit for CTM and PAM is K2 [2] [19], assuming K/2 super-
topics for PAM. As a result, these methods are highly prone
to over-fitting, as many parameters are being fit.

3.4 Predictive Distributions
Given the optimal parameters (α∗, β∗) obtained from Al-

gorithm 3, and the word-topic observations (w, z) the pre-

dictive distribution for document j, θ̂j , is estimated as:

θ̂jk =


























































α
∗

k + Nj,k

α∗

k
+ β∗

k
+

∑

K
l=1 Nj,l

, if k = 1

α∗

k + Nj,k

α∗

k
+ β∗

k
+

∑

K
l=k Nj,l

×

k−1
∏

m=1

β∗

m +
∑K

l=m+1 Nj,l

α∗

m + β∗

m +
∑

K
l=m Nj,l

if 1 < k < K

K−1
∏

m=1

β∗

m +
∑K

l=m+1 Nj,l

α∗

m + β∗

m +
∑

K
l=m Nj,l

if k = K

(12)

for the topics k = 1 . . .K and the documents j = 1 . . . D.
The predictive distribution for the probability of words

given topics, φ̂k is estimated as follows [8]:

φ̂ki =
N i,k + γ∗

i
∑V

i=1

(

N i,k + γ∗

i

)
(13)

Notice that the probability of topics θ̂j is document depen-
dent. On the other hand, the probability of words given
their topic φ̂k is topic dependent. This implies that for an
unseen document, we need to estimate its predictive distri-
bution of topics while the probability of words given their
topics remains the same.

4. EXPERIMENTAL RESULTS

4.1 Validation
The main challenge to validate statistical topic models is

the lack of reliable observed topic labels for each word of a
corpus. The standard approach is to estimate the likelihood
of held-out data [17]. In addition, model performance in a



Algorithm 4 EL Estimation for model M

for s← 1 to Ns do
Sample document ds with mixture θs given model M

Find p(w = i|θs, φ̂,M) =
∑K

k=1 θskφ̂ki for i = 1, . . . , V
end for
Set logEL= 0
for t← 1 to Dt do

Find p(dt|ds,M) =
∏Nt

wt=1
p(wt|θs, φ̂,M)

Find p(dt|M) = 1

Ns

∑Ns
s=1

p(dt|ds,M)

Update logEL=logEL+Log(p(dt|M))
end for
return logEL

supervised task has also been used [22]. Here, we validate
the GD-LDA performance addressing these two forms. We
estimate the likelihood of completely unseen documents us-
ing Empirical Likelihood, and we compare the performance
of topic models in the ad hoc Information Retrieval as de-
veloped in [19].

4.1.1 Empirical Likelihood (EL)
There has been a debate about the evaluation of topic

models with methods ranging from the harmonic mean of
complete likelihood for topic assignments, to perplexity and
empirical likelihood. As discussed in [17], perplexity falls
into the category of document completion where a portion
each document must be observed to estimate the likelihood
of the remaining content. Similarly, a “left to right” evalua-
tion has been proposed to estimate the probability of words
in a test document incrementally [17]. For validation, we
use Empirical Likelihood (EL) criterion. Our intent is to
predict the likelihood of fully unseen documents. We do not
use perplexity or “left to right” evaluation because they are
based on the word order inside the document, in contrast
to “bag of words”. In addition, EL has been shown to be a
more pessimistic approximation for the probability of held-
out documents than “left to right” method [17].

We estimate EL as described in [11]. Here, we generate a
set of pseudo documents, θs using the estimated prior topic
distribution of the model being tested using training data.
Then, a word distribution is estimated for each θs based on
φ̂. This is used to estimate the probability of seeing the test
set. We define this process by means of Algorithm 4. Here,
Dt represents the number of documents for a test set, dt is
the document t = 1, . . . , Dt, wt are the Nt words of dt, and
Ns is the number of pseudo documents given model M . We
use the generative approach based on the conditional Beta
distributions of the tree representation for GD as in Fig 1.
The main limitation of EL estimation is that the number of
pseudo documents should be sufficiently large to cover the
parameter space of θ given the trained model. Then, Ns

determines the accuracy of the approximation.

4.1.2 Ad hoc Retrieval
Information Retrieval represents a hard problem where

the gains of new models are often small or nil. This applica-
tion represents a good test of the power of our approach. We
compare the performance of different topic models in ad hoc
Information Retrieval (IR). We use the approach proposed in
[19] and incorporate our model by replacing the LDA model
described in the method. Based on the predictive distribu-
tion estimators for topics φ̂, and for each document θ̂j , we
provide a topic-based language model for each document,

Table 1: Features of the datasets analyzed. Mean doc-

ument includes the 95% interval
Dataset NIPS NYT APW OHSUMED
# documents 1840 5553 14657 196404
# unique terms 13649 11229 18471 38900
Mean doc. length 1322± 274 274± 132 169±76 186± 36

Table 2: Number of Gibbs samples per EM iteration
MCEM iteration 1-4 5-6 7-8 9 10
Burn-in Samples 10 15 20 40 50
Gibbs Samples 50 100 200 500 700

PTM (w|θj), as follows:

PTM (w|θ̂j , φ̂) =
K
∑

k=1

P (w|z = k, φ̂k)P (z = k|θ̂j) (14)

This is augmented with the maximum likelihood estimate for
the language model based on document termsDj , PML(w|Dj),
and for the language model based on the corpus C, PML(w|C),
leading to:

PIR(w|Dj, θ̂j, φ̂) = λ

(

Nj

Nj + µ
PLM (w|Dj) +

µ

Nj + µ
PML(w|C)

)

+(1− λ)PTM (w|θ̂j, φ̂)
(15)

where µ is a smoothing parameter, Nj is the number of
words in document j, and λ is a parameter for the linear
combination. Therefore, the ranking function for query Q
with terms q is given by:

P (Q|Dj , θ̂j , φ̂) =
∏

q∈Q

PIR(w = q|Dj , θ̂j , φ̂) (16)

We use the parameter values: µ=1000, λ=0.7. These are
the values recommended in [19].

4.2 Experimental Settings
We use 4 different datasets to test our model. NIPS con-

ference papers dataset2 which contains long documents (8-
10 pages). Two news datasets, NYT and APW, obtained
from TREC-3. These collections contain shorter documents
(1 page) with different vocabulary size. A fourth dataset,
OHSUMED from TREC-9, consists of abstracts from med-
ical papers. In contrast to the other datasets, the number
of documents is much larger (more than ten times). Table
1 shows the features of these datasets. We remove standard
stop words and perform stemming in all datasets.

We test 4 variants of the GD-LDA algorithm. In two of
these cases we fix the value of γ and optimize the parameters
α and β as in Algorithm 3 based on two variants: 1) using
the empirical expected topic assignments z̄ [18], GD-LDA

Fixed Gamma Mean; and 2) using the empirical mode z∗ [7]
in the M-step, GD-LDA Fixed Gamma Max. In the other
two cases, we optimize all the three parameters (α,β and γ)
based on the expected topic assignments, GD-LDA Mean,
and the topic assignment mode GD-LDA Max.

We compare GD-LDA, LDA with parameter optimization,
CTM and PAM. For LDA, we use our own implementation.
We follow the collapsed Gibbs sampling approach [8], with
asymmetric Dirichlet prior distributions for both, the prob-
ability of words given a topic, and for the probability of
topics. These parameters are optimized as discussed by au-
thors in [6]. For optimization, we follow the Newton-based
approach proposed by Minka in Eqs 56-60 [12]. For both

2Available at: http://cs.nyu.edu/~roweis/data.html



Figure 3: Qualitative example of GD-LDA for the NYT

dataset with 20 topics. Probability of topics: marginal

probability as defined by Eq 18 (red), conditional prob-

ability given the parent node as defined by Eq 22 (blue).

GD-LDA and LDA, we set a maximum of 1, 000 Newton
iterations for parameter optimization. The schedule of the
Gibbs sampling is detailed in Table 2. We initialize the val-
ues αk = 2/K for k = 1, . . . ,K − 1, and βK−1 = 2/K in
GD-LDA to obtain the special case of Dirichlet distribution;
we start with LDA as prior model, and allow the data to
adapt the model in the MCEM iterations to the more general
GD. For CTM3, we use the default settings with parameter
estimation: a maximum of 1, 000 EM iterations with con-
vergence of 10−5 and maximum of 20 variational iterations
with a convergence rate of 10−6. For PAM4 we use 1000
Gibbs samples and K/2 super topics. This implementation
supports multi-threading; to enable a fair comparison we use
only one thread. We modify the implementation to obtain
the fitted parameters since they are not provided by default.
For EL estimation, we perform 10-fold cross-validation and
we sample Ns = 10, 000 pseudo documents.

4.3 Results

4.3.1 Qualitative Results
Fig 3 shows a qualitative example of GD-LDA in the NYT

dataset. The figure represents the empirically estimated
probability of topics for a subset of the topics. Each box
represents a topic and the terms displayed are the ones with
highest posterior predictive probability φ̂k. Given the fitted
GD-LDA model, we calculate the point estimate of the to-
tal probability for each topic (in blue) and its conditional
probability given a parent node (red). Here, conditional on
the current node, we move deeper into the tree or observe
a word from the topic at that level. As we move down into
the tree, the conditional probability of picking the left hand
topic increases since the probability mass of the remaining
topics is less. This is a desirable property which facilitates

3We use the CTM implementation provided by Blei at http:
//www.cs.princeton.edu/~blei/ctm-c/.
4We use the implementation provided by Mallet http://
mallet.cs.umass.edu/.

Figure 4: Correlation graph of a subset of topics inferred

by GD-LDA for the NYT dataset with 30 topics.

dimensionality reduction. If this probability is large com-
pared with the probability of exploring further the tree, we
can discard the remaining tree.

Fig 4 shows some of the positive and negative correlations
between different topics inferred by GD-LDA. We observe
that Health is positively correlated with Technology and Fi-

nancial. Y2K is positively correlated with Technology and
Arts but negatively correlated with Foreign Politics. Note
that by default LDA assumes negative correlations, thus the
main value of topic correlated models is to discover positive
correlations. Fig 5(a) shows the decomposition of a sports

document from the NYT dataset into topics using PAMwith
10 super-topics and 20 sub-topics, CTM and GD-LDA with
20 topics. This shows that CTM and GD-LDA assign a
high probability to a single topic (sports). On the other
hand, PAM provides 3 sub-topics and most of the super-
topics with a significant probability mass. This is not de-
sirable since an important objective with topic modeling is
to cluster documents based on the topic mixture. Fig 5(b)
shows a comparison between CTM and GD-LDA for a docu-
ment about the Y2K problem and airport functionality. We
observe that GD-LDA provides better segmentation of the
document based on the topics proportions and content.

In addition, we calculate the distribution of the number of
significant topics in a document. We rank the topics based
on their topic probability mass in each document. Then,
we estimate the number of topics which accounts for 95%
of this probability mass. Fig 6 shows the distribution of
this number of topics inferred by LDA, CTM, PAM, and
GD-LDA. For PAM, we consider the number of sub-topics.
Here, we observe that CTM favors high number of topics for
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Figure 5: Qualitative comparison of the topic distribu-

tion for two documents from the NYT dataset. (a) From

left to right: PAM, CTM, and GD-LDA (b) From left to

right: GD-LDA and CTM
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Figure 6: Distribution of the number of significant

topics per document for the APW corpus inferred by:

(a)LDA, (b)CTM, (c)PAM, and (d)GDLDA using K = 50

topics. X-axis is number of topics per documents and Y -

axis is the percentage of documents in the corpus.

each documents which introduces noise when the goal is to
characterize documents as in Information Retrieval. In PAM
the number of topics per document is highly dependent of
the number of super topics used. In order to handle topic
correlation sparsity, PAM prunes the relationships between
a super topic and subtopics [11]. This reduces the amount
of correlations that can be modeled. In contrast, GD-LDA
favors smaller number of topics per documents and without
any constraint in the inference. The key property for this
behavior is the cascade structure of the distribution. As dis-
cussed in section 2.2, this validates empirically the intuition
of few significant topics for natural language documents, and
sparse correlations.

4.3.2 Empirical Likelihood Results
Fig 7 shows EL estimations for the 4 variants of GD-LDA,

CTM, PAM and LDA with asymmetric prior and parame-
ter optimization in the four datasets. For the NIPS dataset,
LDA is not shown since its predictive likelihood is extremely
low. Similarly, PAM performance for the OHSUMED dataset
is not shown for the same reason. The CTM model would
not run for the OHSUMED dataset (mid-size dataset) based
on the number of documents and vocabulary size.

We observe that optimizing γ has a low impact as more
data becomes available. Conceptually, a prior distribution
represents the prior knowledge with a given sample size.
Consequently adding more data decreases the impact of the
prior information. This is consistent with the conclusions
discussed in [16]. We then compare the use of the topic
assignments, z̄ (posterior mean), and the topic assignment
mode, z∗ (maximum a posteriori MAP). We find that GD-

LDA mean performs better, when the number of documents
and the vocabulary size are relatively small (NIPS dataset).
In contrast, GD-LDA Max shows the highest performance
for the other datasets, Fig 7(b)-(d). In particular, this
method performance is clearly superior for all the topics
when tested for the largest dataset (OHSUMED). GD-LDA

Mean requires fewer topics to achieve a superior performance
compared to LDA, CTM and PAM. Moreover, EL decreases
more smoothly than these methods. It also remains fairly
constant when the number of topics attains a high value.

An important difference between the datasets analyzed is
the average document length and number of unique terms.
The worst performance of CTM, as well as PAM, is found in
the case of APW dataset. This dataset has a larger vocab-
ulary size, and significantly shorter documents than NIPS
dataset, where both CTM and PAM show a similar perfor-
mance to that of GD-LDA Mean. This suggests over-fitting
by CTM where a full topic covariance matrix is estimated,
and by PAM where a matrix of K subtopics by K/2 super-
topics is estimated. In addition, PAM uses the method of
moments, instead of optimization, for parameter estimation.
This is a limitation of PAM when EL based evaluation is
performed since the fitted parameters do not optimize the
likelihood. As discussed in section 4.3.1, CTM favors larger
number of topics for each document than the other meth-
ods. This behavior introduces noise in EL because correla-
tions are sparse, and only a few topics are present in natural
language documents.

4.3.3 Ad hoc Information Retrieval Results
We show the application of GD-LDA in ad hoc IR using

the OHSUMED dataset. As discussed above, we use the ap-
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Figure 7: Mean per-document log-Likelihood for (a) NIPS, (b)NYT, (c)APW and (d) OHSUMED datasets as a

function of the number of topics.

Table 3: Results of ad hoc IR using GDLDA, LDA and

PAM models using K topics for the OHSUMED dataset
Model K P@10 MAP DG
GD-LDA 50 0.502±0.06 0.496±0.06 0.790±0.07
LDA 50 0.470±0.06 0.470±0.06 0.780±0.08
PAM 50 0.434±0.06 0.439±0.05 0.671±0.04
GD-LDA 75 0.470±0.06 0.491±0.06 0.742±0.04
LDA 75 0.470±0.06 0.461±0.06 0.741±0.04
PAM 75 0.431±0.06 0.438±0.05 0.651±0.03

proach from [19] as a benchmark for comparison. We train
the GD-LDA Max using K = 50 and K = 75 topics, and
compare its performance with LDA and PAM. We use stan-
dard IR measures: Precision at 10 (P@10), Mean Average
Precision (MAP) and Discounted Gain (DG), to compare
these methods. The OHSUMED dataset is considered to be
a medium size dataset in the IR literature. This contains 63
topical queries with 35, 000 relevant labels.

We have not modified the retrieval model of [19] to ex-
ploit the power of the new GD-LDA model. Despite this,
the performance improvement for all the measures is signif-
icant as we observe in Table 3. Here, the best performance
is for K = 50 topics, where EL estimation peaks in Fig
7(d). For this case, there is agreement between the adhoc
IR and EL performance. Respect to LDA, GD-LDA shows
improvement of: 6.3% for P@10, 5.5% for MAP, and 1.1%
for DG. Note that PAM shows lower performance than LDA
in IR for all the measures. This is consistent with the IR
performance of PAM reported in [22].

4.3.4 Computational Cost Comparison
One advantage of GD-LDA over CTM and PAM is that its

computational complexity is linear in the number of topics.
This is not the case for CTM and PAM which scale quadrat-
ically with the number of topics. As discussed in section 3,
GD-LDA should add minimal computational cost to LDA.

Fig 8 shows the computational time in minutes to fit the
model for LDA, CTM, PAM and GD-LDA in the datasets
we consider. A non-linear increase in time is observed after
50 topics for CTM in NYT and APW datasets, and after
80 topics in NIPS dataset. We observe that the computa-
tional cost of PAM grows quadratically after 20 topics. In
general, the computational cost of GD-LDA is comparable
to that of LDA and is less than CTM and PAM. This is a
significant advantage since GD-LDA provides a more flex-
ible model structure when compared with LDA. Moreover,
variances and a number of covariances are modeled more ef-
fectively, and with minimal increase in computational cost.
This property makes GD-LDA more suitable than CTM or
PAM for larger scale applications, such as IR.

4.3.5 Choosing the Number of Topics
An open problem is how to select the optimal number of

topics to train a model. In general, an exhaustive experimen-
tation needs to be performed to select the optimal number
of topics. Due to the tree structure of the GD distribution,
GD-LDA tends to accommodate the most relevant topics,
based on probability mass, at the upper levels of the tree.

Fig 9 shows the cumulative probability vs the number
of topics of the expected topic mixture of documents given
the fitted parameters for GD-LDA and CTM. We observe
that GD-LDA favors a smaller number of topics. Notice
that, after a certain number of topics, the expected contri-
bution of the remaining ones is not significant. This prevents
GD-LDA from over-fitting. When comparing GD-LDA with
CTM, we observe that CTM favors uniform topic mixtures
in each document. Thus, if we fit CTM for larger number
of topics, we would observe the same linear behavior as seen
in graphs from Fig 9. This prevents CTM from discarding
any topic easily or suggesting an optimal topic range as op-
posed to GD-LDA. In addition, this behavior makes CTM
less effective in handling over-fitting.
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Figure 8: Average running times in minutes of CTM, GD-LDA and LDA for: (a) NIPS, (b) APW, (c) NYT, (d)

OHSUMED. x-axis represents the number of topics. All the experiments were performed using a Quad Intel machine

with 2.5GHz with 8GB of memory.
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Figure 9: Cumulative distribution of the topic mix-

tures based on the fitted prior distribution parame-

ters. From left to right GD-LDA and CTM for: (a)

NIPS and (b) APW. The distributions are shown for

{20, 30, 40, 60, 80, 100, 125, 150, 175, 200} topics.

5. DISCUSSION AND CONCLUSION
We have introduced the use of the GD distribution in

probabilistic topic modeling. The advantages of the GD over
the Dirichlet distribution, and the benefits when compared
with the estimation of the full covariance matrix in CTM
have been described. The apparent constraints on covari-
ances in GD actually results in modeling better sparse topic
correlations in natural language documents, as our empirical
validation indicates. This results in better performance in
empirical likelihood and IR measures. We have developed
an efficient Gibbs sampling model which uses the conjugacy
property of GD with the Multinomial distribution. We have
demonstrated that the running time of GD-LDA is compa-
rable to LDA and less than CTM and PAM. This provides
a model computationally competitive and with better per-
formance than these methods.

We have shown that the impact of optimizing the vocab-
ulary parameter γ decreases when the vocabulary size and
the number of documents in the corpus is large. Due to
the tree structure of the GD distribution, GD-LDA proves
to be powerful in handling over-fitting with a large number
of topics as its performance remains fairly high even when
the number of topics is increased. This is not the case for
CTM, PAM, and LDA. As a consequence, we can reduce the
number of topics, by using the conditional probability of the
remaining topics when we are moving down into the tree. A
natural extension of the model is to allow the tree struc-
ture to be fitted. A direction of improvement is to modify

the Dirichlet tree to have a comparable notion of subtopics
and super topics as in PAM with the same conjugacy and
computational cost as GD-LDA.

We have shown that the use of GD-LDA in adhoc IR in-
creases the performance significantly, in contrast to earlier
incorporations of topic models. Future directions include
the use of topic mixture instead the probability of words in
the ranking function. In addition, we plan to explore the
impact of GD-LDA in Interactive Information Retrieval.
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APPENDIX

A. FIRST AND SECOND MOMENTS OF THE
GD DISTRIBUTION

We derive the first and second moments of the GD distri-
bution based on the tree representation of Eq 2. We write:

θ1 = Z1 θk = Zk(1− θ1 − · · · − θk−1) = Zk

∏k−1
m=1(1− Zm)

(17)

Let Sk = E(Zk), Rk = E(Z2
k). Since Zk’s are independent:

E(θk) = Sk

∏k−1
m=1(1− Sm), E(θ2

k) = Rk

∏k−1
m=1(1 − 2Sm + Rm)

(18)

Similarly for the crossproducts where k < j:

E(θkθj) = E
{

Zk

[

∏k−1
m=1(1− Zm)

]

Zj

[

∏j−1
m=1(1− Zm)

]}

= E
{[

∏k−1
m=1(1− Zm)2

]

Zk(1− Zk)
[

∏j−1
m=i+1(1− Zm)

]

Zj

}

=
[

∏k−1
m=1(1− 2Sm + Rm)

]

(Sk − Rk)
[

∏j−1
m=i+1(1− Sm)

]

Sj

(19)

Therefore, we have for the variance and covariance:

V ar(θk) = Rk

[

∏k−1
m=1(1 − 2Sm + Rm)

]

− S2
k

∏k−1
m=1(1− Sm)2

= RkE(V 2
k )− S2

k(E(Vk))
2

(20)

Cov(θk, θj) = Sj

[

∏j−1
m=i+1(1− Sm)

]

{

(Sk − Rk)
∏k−1

m=1(1− 2Sm + Rm)− (Sk − S2
k)

∏k−1
m=1(1 − Sm)2

}

=
[

E(θj)/E(V 2
k+1)

]

[SkV ar(Vk)− V ar(θk)]

(21)

for k = 1, . . . ,K in Eq 20, and for k = 1, . . . , K − 1 and
j = k+1, . . . ,K in Eq 21. We estimate Sk, Rk based on the
independent Beta distributions of Zk. From the moment
generating function for the Beta distribution we have:

Sk =
αk

αk+βk
Rk =

αk(αk+1)

(αk+βk)(αk+βk+1)
k = 1, . . . ,K (22)

where αK = 1, βK = 0 [4]. Note that the variances and the
expected value are not constrained.

A.1 Covariance Properties of GD Distribution
Three key properties can be derived from Eqs 20-22:

1. For j > k, Cov(θk, θj) > 0 if and only if V ar(Vk) >
V ar(θk). Thus, Cov(θk, θj) > 0 if and only if the sum-
mation of the first k − 1 θ’s varies more than θk

2. For j > 1, Cov(θ1, θj) = −V ar(θ1)E(θj)/E(1−θ1) < 0
since θ1 is at the root level of the tree

3. For j > k+1, Cov(θk, θj) = Cov(θk, θk+1)E(θj)/E(θk+1).
Thus, Cov(θk, θj) at deeper levels of the tree will have
the same sign as Cov(θk, θk+1)

The GD distribution models the Cov(θk, θk+1) for con-
secutive tree levels without constraints. The covariances for
deeper levels in the tree Cov(θk, θj), j > k + 1 are con-
strained. Since θ1 is used as base category, it is always
negatively correlated with the other categories. This is a
typical constraint of the Logistic Normal distribution used
in CTM[2]. The GD distribution constrains the sign of
Cov(θk, θj) to be the same as that of Cov(θk, θk+1) for j >
k+1. These constraints imply that probability of co-occurrence
of these topics is very small.

B. MAXIMIZATION OF α AND β FOR GD
To estimate the parameters of the GD distribution, the

log-likelihood of Eq. 6 is optimized using the Newton method.

L(α, β) =

D
∑

j=1

K−1
∑

k=1

log Γ(αk + βk)−

K−1
∑

k=1

(log Γ(αk) + log Γ(βk))

+

K−1
∑

k=1

(

log Γ(αj

k) + log Γ(βj

k)
)

−

K−1
∑

k=1

log Γ(αj

k + βj

k)

(23)

By taking the derivative with respect to α, β we have:

∂L(α, β)

∂αk

= DΨ(αk + βk)−DΨ(αk) +

D
∑

j=1

Ψ(α
j

k)−

D
∑

j=1

Ψ(α
j

k + β
j

k)

∂L(α, β)

∂βk

= DΨ(αk + βk)−DΨ(βk) +

D
∑

j=1

Ψ(β
j

k)−

D
∑

j=1

Ψ(α
j

k + β
j

k)

(24)

Recall that αj
k = αk + N j,k, βj

k = βk + N j,k+1 + . . . +

N j,K . Notice that the derivative of L(α, β) with respect to
αk just depends on αk and βk as opposed to the Dirichlet
distribution. For the second derivative we have:

∂2L(α, β)

(∂αk)2
= DΨ′(αk + βk)−DΨ′(αk) +

D
∑

j=1

Ψ′(αj

k)−

D
∑

j=1

Ψ′(αj

k + βj

k)

∂2L(α, β)

(∂βk)2
= DΨ′(αk + βk)−DΨ′(βk) +

D
∑

j=1

Ψ′(βj

k)−

D
∑

j=1

Ψ′(αj

k + βj

k)

∂2L(α, β)

∂αk∂βk

= DΨ′(αk + βk)−

D
∑

j=1

Ψ′(αj

k + βj

k)

∂2L(α, β)

∂αk∂αl

= 0,
∂2L(α, β)

∂βk∂βl

= 0 for l 6= k

(25)

Therefore, the Hessian matrix can be written as:

H(α, β) = block-diag [H1(α1, β1), . . . , HK−1(αK−1, βK−1)] (26)

where Hk is the Hessian matrix for αk, βk. Following a simi-
lar logic as in the case of a Dirichlet distribution described in
Eqs (56-60) of [12], we have the following Newton iteration:

αnew
k = αk −

(

H−1
k

gk

)

1
, βnew

k = βk −
(

H−1
k

gk

)

2
,

qk11 =

D
∑

j=1

Ψ
′

(α
j

k)−DΨ
′

(αk), qk22 =

D
∑

j=1

Ψ
′

(β
j

k)−DΨ
′

(βk),

ak =
gk
1 /q

k
11 + gk

2 /q
k
22

b−1
k

+ (qk11)
−1 + (qk22)

−1
, bk = DΨ

′

(αk + βk)−

D
∑

j=1

Ψ
′

(α
j

k + β
j

k)

(

H−1
k gk

)

l
=

gk
l − ak

qk
ll

for l = 1, 2

(27)

where gk1 = dL(α, β)/dαk and gk2 = dL(α, β)/dβk from Eq
24.


