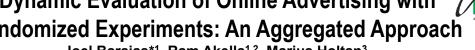


# Dynamic Evaluation of Online Advertising with / Z

## Randomized Experiments: An Aggregated Approach





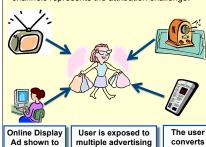
Joel Barajas\*1, Ram Akella<sup>1,2</sup>, Marius Holtan<sup>3</sup>, Jaimie Kwon<sup>3</sup>, Aaron Flores<sup>3</sup>, Victor Andrei<sup>3</sup> <sup>1</sup>UC Santa Cruz, Santa Cruz CA, USA <sup>2</sup>School of Information, UC Berkeley, USA 3AOL Research, Palo Alto CA, USA \*Contact: jbarajas@soe.ucsc.edu

Advertising.com

UC Berkeley School of Information

#### Introduction

- Online Marketing Campaign evaluation has received a great amount of attention by the research community and industry recently.
- The estimation of the incremental effects of advertising campaigns under the presence of other channels represents the attribution challenge.



The use of randomized experiments, also known as A/B testing, has demonstrated to be effective to evaluate marketing campaigns without overestimating their effects [4, 2].

channels in time

These methods require a time window where users are tracked and the measures of interest are collected. As a result, the estimation is aggregated for that time window.



a user

This aggregation is a limitation as often sales are affected by seasonal effects. Thus, detecting when the campaign is more effective provides more insight to understand and improve the campaign.



- · We propose a time series approach to estimate the effects of marketing campaigns on the daily number of sales or conversions
- In previous work, we developed a method to estimate these effects without randomized experiments [1].
- In this approach, we incorporate an accurate baseline to draw causal conclusions from the randomized

#### **Randomized Experiment Design**

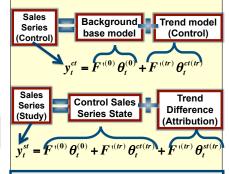
We consider the design proposed by Barajas et al. in targeted display advertising [2].



- For all users visiting the Publisher Website
- We condition the analysis to all the users visiting the publisher websites where the users can be potentially targeted
- We randomize the users before any decision has been made in the targeting process.
- As randomization rule, we use the last two digits of the birth timestamp of the user cookie.
- We aggregate the daily number of conversions over all the users and consider these sales time series for the control and the study groups.

#### Methodology

- We decompose the control and study conversion time series jointly into weekly and trend components using Dynamic Linear Models (DLM) [5].
- We infer the daily mean causal effect as the sales trend differences between both series.



- $y_t^{ct}$  = Number of Sales at Day t (Control)
- $y_t^{st}$  = Number of Sales at Day t (Study)
- $F^{(0)}, F^{(tr)}$  = Base, Trend DLM Obs Matrix
- $\theta_t^0$  = Any DLM State Background Model
- $\theta_t^{ct(tr)}$  = State Trend Model (Control)
- $\theta_{s}^{st(tr)}$  = State Trend Difference (Attribution)
- This model can be written as a 2-D DLM:

$$Y_t = F'\theta_t + v_t$$
  $v_t \sim N(0,V)$ 

$$\theta_t = G\theta_{t-1} + w_t \qquad w_t \sim N(0, W)$$

$$Y_t^{\; \prime} = \left[ y_t^{ct}, y_t^{st} \right] \quad \boldsymbol{\theta}_t^{\; \prime} = \left[ \boldsymbol{\theta}_t^{ct(tr)}, \boldsymbol{\theta}_t^{st(tr)}, \boldsymbol{\theta}_t^{(0)} \right]$$

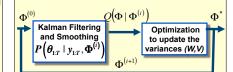
$$F' = \begin{bmatrix} p(z=0) & 0 \\ 0 & p(z=1) \end{bmatrix} \times \begin{bmatrix} F^{i(tr)} & 0 & F^{i(0)} \\ F^{i(tr)} & F^{i(tr)} & F^{i(0)} \end{bmatrix}$$

- $F^{(tr)}$  and  $F^{(0)}$  are set to model a random walk trend and a weekly seasonal components.
- G is constructed as the superposition of these basic components.
- P(z) is known from the experimental design

#### **Model Fitting**

We find the MLE of the variances  $\Phi = (V, W)$ through the EM algorithm [3] and smooth the series to analyze the trend component.

$$\begin{split} \textbf{E-step:} \ &Q(\Phi \mid \Phi^{(i)}) = E_{\theta_{iT} \mid y_{1T}, \Phi^{(i)}} \Big[ \log P(\theta_{1T} \mid y_{1T}, \Phi) \Big] \\ \textbf{M-step:} \qquad &\Phi^{(i+1)} = \arg \max_{i} Q(\Phi \mid \Phi^{(i)}) \end{split}$$



Given the ML estimates {V\*,W\*}, we smooth the time series to find the expected causal trend difference attributed to the campaign.

# Results We find the causal lift (CL,) as the percentage change in sales trends, due to the campaign: $CL_t = 100 \times \frac{F^{1(tr)} \theta_t^{st(tr)}}{P^{st(tr)}}$ $F^{(tr)} \theta_t^{ct(tr)}$ Control (adjusted) Study (adjusted)

Figure: Dynamic Attribution for: campaign 1 (left), and campaign 2 (right)

- We observe positive and negative effects for campaign 1 at different times.
  - This campaign shows immediate effects. At the beginning of the experiment users wait to buy, probably to survey the competition. Then, campaign effects peak to gradually fade to the prior-campaign sales level
- Positive effects are clear from the observed data towards the end of the series for campaign 2.
  - o This campaign shows delayed effects after the campaign is finished.

| Method      | Campaign 1 |      |      | Campaign 2 |       |       |
|-------------|------------|------|------|------------|-------|-------|
|             | Low        | Med  | High | Low        | Med   | High  |
| MCL - Trend | 1.31       | 3.11 | 4.91 | 17.03      | 19.47 | 21.90 |
| MCL - Raw   | -5.03      | 1.31 | 7.65 | 8.29       | 14.50 | 20.71 |

Table: Mean attribution lift (%) estimated from the trend differences (MCL-Trend) and the raw data (MCL-Raw)

MCL-Raw is noisier than MCL-Trend and does not provide any insight about the time when the campaign is more effective

### **Discussion and Current Work**

- We have presented a time series approach to attribute trend differences to marketing campaigns with causal estimates based on randomized
- The approach we have presented is an aggregated analysis over users
- As on-going work, we will incorporate the series of the number of users exposed to the campaign.
- We will model these user visitations and exposures as time series in a joint distribution.

#### Acknowledgements

This work is partially funded by CONACYT UC-MEXUS grant 194880, CITRIS and AOL Faculty Award.

- References [1] J. Barajas, R. Akella, M. Holtan, J. Kwon, and B. Null. Measurin the effectiveness of display advertising: a time series approach In WWW (Companion Volume), pages 7-8, 2011.
- [2] J. Barajas, J. Kwon, R. Akella, A. Flores, M. Holtan, and V. Andrei. Marketing campaign evaluation in targeted display advertising. In ADKDD '12: Proceedings of the Sixth International Workshop on Data Mining for Online Advertising
- and Internet Economy, pages 1–7. ACM, 2012.
  [3] Z. Ghahramani and G. Hinton. Parameter estimation for linear dynamical systems. Technical report, 1996.
- [4] R. A. Lewis, J. M. Rao, and D. H. Reiley. Here, there, and everywhere: correlated online behaviors can lead to overestimates of the effects of advertising. In *Proceedings of WWW2011*, pages 157–166. ACM, 2011.
- [5] G. Petris, S. Petrone, and P. Campagnoli. Dynamic Linear Models with R. use R! Springer-Verlag, 2009.