A Flexible Scheduling Framework Supporting

Multiple Programming Models with Arbitrary Semantics in Linux*

Noah Watkins
Systems Lab
UC Santa Cruz

jayhawk@soe.ucsc.edu

Jared Straub and Douglas Niehaus
Information and Telecommunication Technology Center
University of Kansas, Lawrence, Kansas 66045
igrally@ittc.ku.edu, niehaus@ittc.ku.edu

Abstract

We present a hierarchic scheduling framework for Linux called Group Scheduling that facilitates the
creation of arbitrary thread schedulers. Traditional approaches to developing new scheduling semantics
require semantic mappings onto existing schedulers, such as static-priority. Group Scheduling allows for a
direct implementation of semantics, allowing clear mappings at any level a developer desires. In order to
effectively support scheduling semantics, integration with concurrency control is necessary (e.g. priority
inheritance). However, when considering arbitrary scheduling semantics hard-wired solutions such as PI
can’t adapt. We present Proxy Execution as a general mechanism to resolving policy conflicts that arise
as tasks from different scheduling domains interact through the RT-Mutex primitive.

1 Introduction

The recent and continuing evolution of computer sys-
tems and their applications exhibits a significant se-
mantic explosion. The capabilities of computer sys-
tems continue to grow rapidly at the hardware level,
and the range of application semantics is keeping
pace. However, where hardware enhancements of the
past have centered around increased chip frequencies,
today we are seeing an increased degree of parallelism
present in single systems. Effectively exploiting this
parallelism in many instances requires that a system
support diverse application semantics and reconfig-
urability.

Semantic diversity and reconfigurability of a sin-
gle system means that the system supports multiple
application semantics, that the set of semantics used
by applications executing on a system can be recon-

figured, and that applications with different seman-
tics can coexist. For example a single system should
be capable of supporting relatively familiar applica-
tion semantics such as deadline, rate, priority, and
CPU share based semantics, in addition to exper-
imental and emerging semantics that may include
application progress or other semantics that do not
map well onto traditional scheduling policies. More-
over, the set of applications on a system cannot only
require a wide variety of execution semantics through
reconfigurability, but in fact may require many or
all of those semantics simultaneously. Single system
support of multiple semantics can also reduce hard-
ware costs by replacing several separate systems with
a single physical platform that accurately supports
the semantics of all applications.

In comparison to the huge amount of change
in system hardware support, the semantics of the

*The work presented here was supported in part by NSF grants CNS-0716740 and CCF-0615035

programming models provided by modern operat-
ing systems has scarcely changed in the last 30
years. Threads are still typically scheduled with dy-
namic priority semantics !, and concurrency is most
commonly controlled using semaphores. Some ex-
pansion of semantics in scheduling and concurrency
control has, of course, occurred in the past three
decades. In particular, condition variables, reader-
writer locks (including RCU), queuing semaphores,
and monitors have expanded the concurrency con-
trol domain, while rate-monotonic analysis and EDF
have expanded the availability of scheduling seman-
tics in systems with static semantic configurations
[1,2]. Nonetheless, it is fair to say that a software
developer transported from 1980 would have far less
difficulty recognizing and understanding the seman-
tics of scheduling and concurrency control offered by
modern operating systems than they would the hard-
ware supporting today’s mix of operating systems
and applications.

1.1 The Growing Semantic Gap

The semantic gap between applications and operat-
ing systems is growing for two major reasons. First,
the diversity of applications is expanding as cheap,
powerful hardware begs to be used in new, imagi-
native ways. The second force fueling this semantic
divide is the tremendous inertia the dynamic prior-
ity programming model has in modern operating sys-
tems due to widespread deployment, maturity, and
simplicity. Decades of scheduling research and real-
time system development have been done in environ-
ments implementing priority models, and this model
is taught to all students of computer science.

While we do argue that a tremendous problem is
arising with an increasingly large semantic gap, we
in no way argue against the importance of priority-
based programming models. On the contrary, pri-
ority programming models are by far the dominant
models, and in an important sense a victim of the
their own success. Many applications exhibit pri-
ority semantics directly, and many other application
semantics are easily mapped onto the priority model.
Concurrency control mechanisms developed assum-
ing priority-based scheduling are convenient and eas-
ier to develop. Finally, and perhaps most impor-
tantly, developers of new applications with new se-
mantics often have no alternative to mapping their
semantics onto priority. This lack of choice may be
a result of having no access to OS source, or the
prospect of developing a new scheduler may pose an

insurmountable barrier to developers because of time
constraints, or lack of expertise. Bold developers
sometimes use complex middleware solutions map-
ping application semantics onto traditional static-
priority programming models. However, as appli-
cation semantics become more sophisticated and di-
verse, the required mappings become more difficult
and costly to create.

1.2 Bridging the Gap

A common pattern has emerged due to the great
difficulty of changing the semantics of programming
models exported by an operating system. Practition-
ers commonly assume that they will have to use one
or more of the following techniques: (1) adaptation of
their applications to use priority semantics, (2) ma-
nipulation of priorities to force the desired semantics
at the user-level, or (3) using concurrency control
mechanisms for their scheduling effects. These tech-
niques have often proved to be good enough on dedi-
cated systems where reasoning about a single seman-
tics, or several simple semantics is a tractable prob-
lem. However, the explosive growth in application
semantics, and the combination of semantics coex-
isting on a single system, is making such approaches
increasingly difficult. Even worse, researchers are
increasingly interested in programming models that
make it easier to formally model and verify appli-
cation behavior. Continuing to bridge the seman-
tic gap by mixing and matching indirect methods
will not scale as the resulting complexity will be too
great. An alternative approach is to directly imple-
ment application semantics, allowing developers to
choose the appropriate level at which semantic map-
pings occur.

Methods for directly implementing a wide range
of application semantics, and for specifying how the
conflicting demands of applications with differing se-
mantics can be reconciled, would greatly simplify
much of the accidental complexity incurred by tech-
niques such as indirect semantic mappings. While
direct implementations do not reduce the inherent
complexity of application semantics, a direct imple-
mentation significantly reduces the complexity added
by indirect methods, and facilitates modelability.

1.3 Group Scheduling

Group Scheduling 2(GS) is a practical approach to
hierarchic scheduling which emphasizes direct repre-

1The introduction of the CFS scheduling class as a replacement for the SCHED_OTHER implementation is a step in the
right direction, away from multiplexing many semantics into a priority-based scheduler

sentation of computation structure and direct imple-
mentation of application semantics [6]. For many
years Group Scheduling has been used for a wide
variety of projects, proving capable of describing a
broad set of application semantics, and expressing
system level policies such as how to balance conflict-
ing demands from different applications. The use of
GS reduces application implementation complexity
compared to using indirect methods because devel-
opers are free to express semantics in ways appropri-
ate for a given application.

This paper describes the most recent extension
of Group Scheduling, which has integrated schedul-
ing with the semantics of the RT-Mutex concurrency
control primitive. This work builds upon, and signif-
icantly generalizes, the concurrency control approach
used in CONFIG_.PREEMPT_RT [4].

Our approach, which we call Proxy Execution,
employs a general representation of mutex blocking
relations, and provides hooks into which customized
routines may be plugged to make decisions such as
granting mutex ownership on release, and permission
to steal 3. The goal of Proxy Execution is to sched-
ule owners of mutexes in such a way that desirable
tasks blocked on mutexes are made runnable as soon
as possible. A common solution, and the one used in
CONFIG_PREEMPT _RT, is to implement the prior-
ity inheritance protocol. However, unlike PI, Proxy
Execution works independently of scheduling seman-
tics, and resolves policy conflicts that cross schedul-
ing domains. While Proxy Execution is a simple idea,
the implementation is complicated by a number of
factors. These include the maintenance of blocking
graphs, memory allocation requirements, and limita-
tions on concurrency incurred during maintenance of
the graph.

Proxy Execution does not yet integrate all forms
of concurrency control, but we believe that the ap-
proach we have taken to the integration of scheduling
with concurrency control already provides a platform
within which a wide range of programming model
semantics can be directly implemented, including a
large number of scheduling algorithms popular in the
research community that are currently implemented
in specialized kernels, or in Linux using ad-hoc meth-
ods and evaluated with micro-benchmarks.

The availability of a common platform within
which a wide range of algorithms and competing se-
mantics could be implemented would be a signifi-
cant advantage in facilitating accurate comparisons.
Since each algorithm could be tested using identical

system configurations, system performance measure-
ments can be taken to accurately reflect the charac-
teristics of a particular algorithm or scheduling pol-
icy.

Many methods exist for collecting performance
related information on Linux-based systems, both
in user-space and within the kernel. Common
frameworks include FTrace, LT Tng, SystemTap, and
Kprobes. In this paper we make reference to one such
framework called DataStreams, developed and used
by the KUSP research group.

The remainder of this paper is organized as fol-
lows. First we briefly explore related work. Next
we provide a background and motivation for the de-
velopment of Proxy Execution, and describe its im-
plementation in Linux. Finally we provide a sam-
pling of programming models implemented in Group
Scheduling to illustrate its power and generality.

2 Related Work

The original Group Scheduling [5,6] framework was
built in the 2.4 Linux kernel, and represented all com-
putation types such as hard-IRQs, soft-IRQs, and
tasklets, as members in the hierarchy. However, in
this version integration of scheduling semantics with
concurrency control was not addressed.

The work of [3] adapted the Group Schedul-
ing framework to function on top of CON-
FIG.PREEMPT_RT, which in turn unified all com-
putations as threads, allowing a simplification of the
Group Scheduling framework’s treatment of compu-
tation types. This work also introduced integrated
concurrency control with a limited form of Proxy Ex-
ecution that required an SDF to consider a thread
blocked on a mutex. Knowledge of blocking rela-
tionships then allowed the framework to calculate
the correct task to run to resolve the conflict. This
form of Proxy Execution did not support scheduling
algorithm optimizations such as removing a blocked
task from its run-queue, nor did it address support
for SMP systems.

The scheduling stack introduced at the same
time as the Completely Fair Scheduler represents a
first attempt at supporting multiple scheduling do-
mains in Linux. However, the strict precedence or-
der of scheduling domains and hard-coded assump-
tions of a priority scheduling model in the RT-Mutex
framework are not flexible enough to support arbi-
trary semantics.

2Group Scheduling in this paper does not refer to the kernel facility cgroups, once named Group Scheduling

3stealing

Priority inheritance and priority ceiling are clas-
sic approaches to solving the problem of priority in-
version [7]. The RT-Mutex in Linux implements the
priority inheritance protocol [4], however neither so-
lution effectively supports a general scheduling pol-
icy, and forces developers to map all policies onto pri-
ority, further complicating the situation when multi-
ple policies are simultaneously active on a system.

3 Implementation

We describe our implementation of Proxy Execution,
including the extensions to the RT-Mutex frame-
work, and the integration of these extensions with
Group Scheduling to support Proxy Execution. We
begin with a brief overview of the Group Schedul-
ing framework, and provide a detailed motivation for
Proxy Execution. Then we describe Proxy Manage-
ment, which is our set of extensions made to the RT-
Mutex primitive that support Proxy Execution. Fi-
nally, we provide a detailed view of Proxy Execution
and it’s use within the Group Scheduling framework.

3.1 Background

Group Scheduling is a hierarchic scheduling frame-
work consisting of the following components: (1)
scheduling decision functions (SDFs), (2) groups of
computations, and (3) scheduling data. An SDF is
an implementation of a specific scheduling seman-
tics (e.g. static-priority or EDF), and controls the
computations of a group, that is, a group represents
a set of computations scheduled according to the
scheduling semantics implemented by the controlling
SDF. A computation is represented as a member of
a group, and may be a thread or another group (al-
lowing a hierarchic structure). And finally, arbitrary
scheduling data may be associated with both groups,
and members of groups.

Scheduling Decision Functions

The idea of an SDF is analogous to a scheduling class
in the Linux kernel. Like a scheduling class an SDF
is implemented by filling in generic function point-
ers. In fact, Group Scheduling has reused many of
the scheduling hooks used in the implementation of
the existing Linux scheduling framework.

An SDF itself is only an implementation of a
scheduling semantics, and like a scheduling class
which operates on a run-queue of tasks in a schedul-
ing domain, an SDF too must operate with a set of

computations. Group Scheduling organizes compu-
tations into groups, where a computation may be a
thread, or another group. A group must also be asso-
ciated with exactly one scheduling decision function,
which controls the semantics by which the group
members are scheduled.

GS Hierarchy Evaluation

As discussed, groups are composed of computations,
which may include other groups. This allows a set
of groups to be organized in a hierarchic structure,
with a single root group. When a scheduling decision
is made the hierarchy is traversed starting with the
root group. As the hierarchy is traversed, each group
evaluates its associated scheduling decision function
over its members, returning a group, a thread, or a
control message such as no decision. This organi-
zation is very general, allowing multiple scheduling
semantics to be active on a system simultaneously,
but poses difficult problems for resolving conflicts
between tasks as they interact through shared re-
sources. In this paper we consider a shared resource
to be represented by a semaphore, and a conflict to
refer to a blocking relationship between a waiter and
an owner of a semaphore.

An example hierarchy is shown in Figure 1. The
root group is labeled SEQ, short for sequential SDF),
and implements a semantics that chooses the first
runnable task in a queue. When this hierarchy is
evaluated each member is recursively evaluated until
a runnable thread is found. Threads are depicted by
the squares labeled T'1 through 7'6. The group la-
beled Linux represents a scheduling decision made by
Linux through the evaluation of the standard Linux
scheduling classes.

¥ ¥ X ¥ ¥ X
FEE]| BRI
— —> — >

FIGURE 1:

Balanced Progress Hierarchy

Resolving Policy Conflicts

Group Scheduling allows for a completely general or-
ganization of scheduling semantics to exist on a sys-
tem. However, consider one common type of conflict
that results from such a flexible configuration. Sup-
pose a task scheduled under a static priority policy
blocks on a mutex owned by a task scheduled un-
der CPU reservation policy. Resolving this conflict
in the general case is very difficult as no general de-
cision function can be created to compare arbitrary
policies. The solution that Group Scheduling pro-
vides is called Proxy Execution. Proxy Execution
is a general mechanism for resolving such conflicts.
However, first let us examine how Linux resolves con-
flicts between distinct scheduling domains.

Linux implements two main scheduling classes,
the real-time static priority scheduler, and the com-
pletely fair scheduler. These two classes are orga-
nized in a stack with a strict ordering of impor-
tance. Specifically, the real-time class is always con-
sidered first, followed by the CFS class, and finally
the class which always chooses the idle thread. In or-
der for Linux to effectively support the overall, sys-
tem scheduling policy implied by the strict ordering
of scheduling domains a mechanism must be in place
to resolve the conflict that result when the execution
of a thread from one scheduling domain is blocked
by a thread from another domain, the most impor-
tant case in Linux being a real-time task blocking on
a mutex owned by a task scheduled under the CFS
policy.

The solution used in Linux is to implement
the priority inheritance protocol, thereby integrat-
ing scheduling semantics with concurrency control.
However, the priority inheritance protocol is only ap-
plicable to tasks scheduling under priority semantics,
thus the PI mechanism alone cannot resolve such a
policy conflict. The solution used is two-fold: (1) all
tasks are capable of being moved into the real-time
scheduling class (i.e. a priority field exists in the
task struct), and (2) a strict separation of priority
exists between threads in the real-time domain, and
those in the CFS domain. Given these properties the
clever solution is to simply observe alterations to a
task’s priority value and automatically move a task
from the CFS domain to the real-time domain, and
vice versa, depending on which range a priority falls
into, either the real-time class or the CFS class. This
mechanism utilizes the effects of the PI protocol to
achieve a more complex system policy. In the general
case this problem is very difficult to solve, and any
solution is likely to fail if it builds on top of exist-
ing forms of integration that assume specific system

policies, such as priority.

One very important aspect of the solution im-
plemented in Linux is worth considering, notably the
movement of a task from one domain to another as a
component of the solution to resolve policy conflicts
between domains. In fact, Proxy Execution uses a
similar method, but generalizes the implementation
and addresses some short-comings with the existing
Linux mechanism. Specifically, the movement of a
task from one domain to another implies that each
task be capable of moving, that is, have the proper
data structures. However, in Group Scheduling arbi-
trary and dynamically allocated scheduling parame-
ters can be associated with computations, thus the
overhead of supporting a computation’s direct move-
ment between any task would require modification
to all member computations as a result of updat-
ing a single group’s configuration. Second, Group
Scheduling places no restriction on the number of
group memberships a computation may have. That
is, a thread may belong to multiple scheduling do-
mains. Obviously, the concerns are similar to that of
direct task movement, but more importantly, the or-
der of hierarchy traversal is non-deterministic, thus
all memberships must be persistent.

3.2 Integrated Concurrency Control

Linux integrates priority scheduling semantics with
concurrency control by hard-wiring an implementa-
tion of the priority inheritance protocol into the RT-
Mutex primitive. Through priority boosting CON-
FIG. PREEMPT_RT implements a limited form of
proxy execution, while scheduling semantics are fur-
ther integrated into the RT-Mutex implementation
during lock release and stealing operations by using
priority specific decision functions. These two com-
ponents, proxy execution and semantic integration,
form what we refer to as a complete integration of
scheduling semantics with concurrency control. A
general complete integration thus requires a general
treatment of both components.

The integration of scheduling semantics with
concurrency control is illustrated by the priority spe-
cific decision functions used in the RT-Mutex imple-
mentation. During lock release the highest prior-
ity waiter is chosen to become the pending owner,
and the priority of a task is again compared to a
pending owner to determine if a lock can be stolen.
The former operation involves a function evaluated
over all waiters on a mutex, and the later is a com-
parison made between two tasks. Group Schedul-
ing generalizes these decisions using hooks in the
RT-Mutex implementation that can be filled in with

Group Scheduling functions that directly implement
specific scheduling semantics.

A general treatment of proxy execution requires
a general representation of the blocking relations
that exist between tasks interacting through a mu-
tex. In PREEMPT_RT these relations are implicitly
represented through priority boosting. The nature
of the priority inheritance protocol allows for a sim-
ple implementation that accumulates the maximum
waiter priority at each mutex, and passes the maxi-
mum priority value onto the owner. This mechanism
is attractive because of its constant memory require-
ments and simple internal concurrency control, but
it masks individual blocking relations making it diffi-
cult or impossible to implement semantics with more
complex requirements, such as CPU bandwidth lim-
iting, which requires explicit links between a blocked
task and its proxy in order to correctly perform re-
source accounting.

Group Scheduling uses a facility called Proxy
Management to create and manage explicit represen-
tations of blocking relationships. These relationships
are then used by the Group Scheduling framework to
implement Proxy Execution.

3.3 Proxy Management

Proxy Management refers to the set of Group
Scheduling extensions built into the RT-Mutex
framework that track blocking relations between
tasks. The difference between Proxy Management
and Proxy Execution is that Proxy Management
refers to the representation, construction, and main-
tenance of task-to-task blocking relations, while
Proxy Execution refers to the use of this informa-
tion in Group Scheduling to resolve scheduling policy
conflicts.

There are two types of blocking relations tracked
by Proxy Management. The first is the relation that
describes a task being blocked, either directly or in-
directly, on another task holding a resource. The
second type of relation maintained by Proxy Man-
agement is the prozy relation. This relation is also
a blocking relation, but represents the first conflict
that must be resolved in order to ”unblock” a task
as soon as possible. While a task may be a part of
any number of blocking relations, it is always asso-
ciated with exactly one proxy relation. Intuitively
a proxy relation tracks the head of a given locking
chain, however in practice determining a proxy is an
iterative process that involves walking the lock chain.

The implementation of Proxy Management uses
two distinct data structures, one to represent generic

blocking relations, and a second to represent proxy
relations. Additionally, changes to the task_struct
and existing RT-Mutex data structures were neces-
sary.

3.3.1 Blocking Graph Representation

Conceptually a blocking graph is a set of blocking re-
lations linked together to reflect the state of a locking
chain. Blocking graphs in Proxy Management explic-
itly represent all blocking relations in a chain, both
direct and indirect, by linking together data struc-
tures representing single blocking relations. The
data structure used to represent a blocking relation is
the Waiter Node. This structure represents a block-
ing relation between two tasks, 77 and 75, and a lock
L1, where T is the owner of L1 and 75 is blocked, ei-
ther directly or indirectly on Ly. Consider the graph
in Figure 2. This figure depicts two indirect, and four
direct, blocking relations represented by the nodes
labeled N2137415.

A Prozy Relation refers to the blocking relation
that exists between a blocked task, and the owner of
the mutex at the head of the blocked task’s locking
chain. This type of relation is represented by the
Proxy Waiter structure. For example in Figure 2
four proxy relations exist between tasks 75345 and
Ty, the owner of the lock L, at the head of the chain.
The prozxy relation data structures in Figure 2 are la-
beled W5 3 45. Each of the dashed lines in the figure
represent linked lists that are used to organize the
Proxy Management data structures, and their asso-
ciation to each other and to the existing components
of the RT-Mutex framework.

T 7 - T

N LN—‘ nodes I
' | [os -]

: '

.]

1 1
—> N .
]
1

=>=>=>=>

(o

TTTE== Sprx_waiter_nodes - =T =
b %] [L]
]

[alE]

Lo

FIGURE 2: Proxy data

structure representation

Management

3.4 Proxy Execution

Proxy Execution is the Group Scheduling mechanism
used to resolve arbitrary scheduling conflicts that
arise when a task blocks on a mutex. Consider the
state of the system shown in Figure 2 in which tasks
T5,3.4,5 are blocked on task 77. A Group Scheduling
policy that selects one of these blocked tasks as the
most desirable task will use Proxy Execution to re-
solve this conflict by instead running 77 as a prozy of
the desired blocked task. Notice the correspondence
between task 77 and the Proxy Relation associated
with each blocked task. In fact, Group Scheduling
implements Proxy Execution using the proxy rela-
tions created by the Proxy Management framework.

Proxy relations alone cannot be used to imple-
ment Proxy Execution because a proxy relation rep-
resents a scheduling policy agnostic view of a block-
ing relation. That is, it reflects only the task-level
view of a relation. This is in conflict with the goals
of Proxy Execution which by definition resolve con-
flicts between specific scheduling policies. Addition-
ally, two tasks on a system can be involved in at most
a single blocking relation with each other. However,
Group Scheduling allows tasks to hold memberships
in multiple groups. Thus, a proxy relation at the
task-level corresponds to proxy relations between one
or more Group Scheduling members in possibly dis-
tinct scheduling domains. Group Scheduling solves
these problems through the use of avatars.

An avatar is a special-purpose member sched-
uled in-place of a specific member corresponding to
a task blocked on a mutex. An avatar is created for
each membership of a task associated with a Proxy
Relation, and may use scheduling parameters iden-
tical to those of the task the avatar masquerades
as. Proxy Execution is thus achieved by scheduling
the blocking task associated with the Proxy Relation
that prompted the creation of the avatar. Intuitively
the use of an avatar is similar to giving a task tem-
porary group membership under a set of different
scheduling parameters. In practical terms an avatar
is automatically allocated for each member because
a task can only ever be associated with at most one
proxy relation. In contrast, it is possible that a task
may need to be scheduled as a proxy, simultaneously,
from all scheduling domains.

3.4.1 Scheduling Hooks

Avatars are brought in and out of existence as proxy
relations are created and destroyed. When a new
avatar is created the appropriate SDF is notified by
calling the insert-member hook, and specifying the

avatar as the member being added to the group.
Likewise the generic remove-member hook is called
to remove an avatar when a proxy relation is de-
stroyed by the Proxy Management framework. An
SDF may examine a member to determine if it is
a proxy allowing it to execute any special setup or
tear-down routines that are required.

3.5 RT-Mutex Extensions

This section covers the extensions made to the RT-
Mutex framework that implement Proxy Manage-
ment. In this section we refer to proxy relations
that are created and destroyed. These terms convey
heavy-weight operations, however in many circum-
stances the implementation is improved by re-using
data structures.

3.5.1 Blocking

Blocking on a mutex is an operation that results in
the creation of at least one new proxy relation. When
a task blocks on a mutex a direct blocking relation is
always created between blocking task and the owner
of the mutex. In addition to the direct blocking re-
lation, zero or more indirect relations are created if
the blocking task has existing waiters, and when the
owner of the lock being blocked on, is also blocked
on a mutex. In the later case the locking chain is
”walked” by iteratively examining blocking relations
until an owner is found that is not blocked on a mu-
tex. In both cases existing proxy relations are de-
stroyed and new relations created as locking chains
are extended.

For each proxy relation that is created or de-
stroyed the scheduling framework is notified by in-
serting or removing an avatar associated with the
affected proxy relation.

3.5.2 Releasing

The release of a mutex must be integrated with
scheduling in the following ways: (1) the selection of
a pending owner from among the set of direct waiters
is integrated with scheduling, and (2) proxy relations
must be updated to reflect the change in ownership
of the mutex. First, the selection of a pending owner
is implemented as a hook into the Group Schedul-
ing framework that allows the decision function to
be dynamically chosen. Second, the Group Schedul-
ing framework must be notified of changes made to
proxy relations.

Releasing a mutex is a two-step process that up-
dates the proxy relations for all threads waiting on
the mutex to be released. In the first step the proxy
relations that exist between all waiters on the mutex
and the owner are destroyed, including the relation
involving the newly selected pending owner. Sec-
ond, all of the relations except the one involving the
pending owner are re-created between the original
waiter associated with the relation, and the pending
owner. It is important to note that proxy relations
are created for a pending owner during release, as
opposed to when actual ownership takes place. Even
though the choice of pending owner is integrated with
scheduling, no guarantee is made that this choice will
actually be scheduled immediately. Thus, proxy re-
lations must be created to prevent the situation in
which a pending owner is never scheduled to fully
acquire a mutex.

Stealing

The ability to steal a mutex is an optimization cre-
ated to exploit the window of time between a pending
owner being selected, and it running to fully acquire
the lock. The stealing operation is integrated with
scheduling in a nearly identical way to that of re-
leasing a mutex. First, the decision to steal a lock
from a pending owner must be integrated with Group
Scheduling. This decision is implemented as hook
that can be replaced by Group Scheduling. Its se-
mantics are dependent on the Group Scheduling pol-
icy and configuration, and must be able to make a
boolean valued comparison between tasks of poten-
tially different scheduling domains.

When a task attempting to steal a lock is denied
permission to take possession of the lock it immedi-
ately blocks on the mutex. If a task does steal a lock
then it must alter any existing the proxy relations
involving the pending owner. First, the stealing task
destroys all proxy relations between waiters on the
lock and the pending owner. Second, the stealing
task re-creates all proxy relations between waiters
on the lock and itself.

It is possible that a lock be stolen from an ex-
isting waiter. This is a special case taken care of by
treating the stealing task no differently than another
waiter. The result is a configuration of data struc-
tures that represent the new owner being a waiter on
itself. However, this inconsistency is resolved before
the acquiring task re-enables interrupts and releases
the spinlock protecting access to the RT-Mutex.

Waiter Interruption

Interruptable mutex operations allow a task to abort
acquisition due to timeout, or the delivery of a sig-
nal. However, such an interruption can cause a lock-
ing chain to be "broken” at an arbitrary location.
When an interrupted task is positioned at an edge of
blocking graph (i.e. it has no waiters itself) only the
interrupted task’s proxy relation is removed. If the
interruption occurs within a locking chain the proxy
relation of each waiter on the interrupted task must
be updated. Specifically, the interrupted task will
become the new proxy of each of its waiters, and it
is no longer blocked on a mutex.

Unlike the extensions to other RT-Mutex op-
erations, this operation will constrain concurrency
within the locking chain being broken. A waiter that
is interrupted examines all of its waiters, removing
any blocking relation between a waiter and a task
up-stream the locking chain from the point at which
the chain is being broken.

4 Evaluation

In this section the Group Scheduling framework is
evaluated in terms of its generality, and the perfor-
mance of its implementation. It may be impossible
to deliver a formal proof of complete generality for
a framework such as Group Scheduling, thus we opt
for a showcase of schedulers implemented within the
framework. The schedulers chosen are illustrative
of the wide variety of semantics supported by the
framework including classical schedulers, as well as
some exotic breeds. Finally we offer a brief overview
of the performance characteristics of Group Schedul-
ing.

4.1 Balanced Progress SDF

We have developed a balanced progress SDF that
schedules its members in such way that the progress
of each member does not exceed that of other any
other members, within a certain threshold. We
use the term progress in a general sense, and it
may take on different meanings in different applica-
tions. The specific application we describe here is the
balanced progress of multiple processing pipelines,
where progress is defined by the number of data units
processed by a pipeline. For example this may be the
balanced production of video frames.

GS Hierarchy

Figure 1 shows a typical Group Scheduling hierar-
chy used to implement an application with balanced
progress semantics. At the root of the scheduling
hierarchy is the Sequential SDF that schedules its
members in the sequence they appear within the
group. This is analogous to static-priority seman-
tics. Its use here is to provide the computations un-
der control of the balanced progress SDF preference
over all other system computations, denoted gener-
ally as the Linux group.

Each pipeline in Figure 1 is shown as a group
of computations controlled under a sequential SDF
group. Each group of computations representing a
pipeline is in turn a member of the balanced progress
group. Each of the balanced progress members, de-
noted P1 and P2, represent a pipeline whose progress
is to be balanced against other members of the bal-
anced progress group. The scheduling parameters as-
sociated with each member in the balanced progress
group is an integer value representing that pipeline’s
progress. When a pipeline completes a unit of com-
putation it notifies the balanced progress scheduler to
update the scheduling state. The implementation of
the scheduling decision function that forces progress
to never be out of sync by more than one unit of
computation is shown in Program 4.1.

Program 4.1 Balanced Progress SDF

1 balanced_progress_choose_next (group) {

2 if (progress_is_equal(group))

3 return choose_member (group)
4 else

5 return least_progress(group)
6 endif

7}

4.2 Guided Execution

The guided execution programming model was cre-
ated for what we refer to as deterministic concur-
rency testing in which we provide a method for guid-
ing a set of processes (or threads) into specific execu-
tion states in order to create a desired interleaving.
A similar technique is used by the rt-tester to test
execution scenarios within the RT-Mutex framework
that are specified as a schedule of operations. The
guided execution programming model is a generaliza-
tion of the same concept, and can be applied to arbi-
trary codes using schedules that cross the user /kernel
space boundary.

SDF Overview

The Guided Execution SDF schedules members ac-
cording to a user-specified sequence of execution con-
texts, where an execution contexrt is a tuple consist-
ing a thread identifier and an opaque context object
describing a state of execution for the thread. An
example of such a schedule that guides three threads
into a specific interleaving is:

1 (Thread-A, Context-A1)
2: (Thread-B, Context-B1)
3: (Thread-C, Context-C1)
4: (Thread-B, Context-B2)

(top):

The SDF treats the sequence of execution con-
texts as a stack where the top of the stack is the
target context. The SDF executes a schedule by
choosing the thread associated with the target con-
text. Once a thread has reached its target context
the stack is popped and the next thread in the se-
quence is scheduled. A thread is chosen only when
it is associated with the target execution context. In
this way a set of threads can be guided into arbitrary
interleaving.

In the above example Thread-A is first chosen
to run until it reaches Context-Al. When the target
context has been reached the stack is popped and
Thread-B is chosen to run until it reaches Context-
B1l. The schedule continues to execute until all
threads are in the context associated with their last
appearance in the schedule. For example, Thread-B
is first guided into Context-B1, and finally reaches
Context-B2 at which point the schedule has been
completed.

Guided Execution Programming Model

To demonstrate the use of the Guided Execution
SDF we have built a programming model around
the scheduler that expresses an execution context in
terms of specific locations within source code. We
refer to these locations as way-points. A way-point
is a wrapper around the Group Scheduling API that
is used to inform the Guided Execution SDF of a
thread’s current context. Owur current implemen-
tation requires that code be modified by manually
inserting way-points, but nothing will prevent way-
points from being inserted using automated tech-
niques such as automatic compiler insertion.

4.3 Other Semantics

Many other semantics have been created using the
Group Scheduling framework, and both existing
scheduling classes in Linux, real-time static prior-
ity and CFS are portable to the Group Schedul-
ing framework. Notable schedulers implemented in
the Group Scheduling framework include an Ezplicit
Plan scheduler that is similar to the Guided Ezrecu-
tion scheduler, but uses an explicit schedule of exe-
cution periods placed on a time-line. For example, it
is trivial to implement periodic execution of threads
implementing a work-loop based programming pat-
tern.

Another scheduler with complex semantics im-
plemented within the Group Scheduling framework
is the PTides programming model developed at UC
Berkeley as part of the Ptolemy group. This sched-
uler implements an actor-based model where actors
communicate using timestamped events. A model
implements a specification of a discreet event model.
The scheduler is responsible for scheduling an actor
to receive an even only when an event is safe to pro-
cess. Portions of the safe to process analysis can be
done statically, and at run-time sensors and actua-
tors relate model time to physical time.

5 Conclusions and Future

Work

We have presented Proxy Execution, our extension
to the Group Scheduling that supports a general in-
tegration of scheduling semantics with concurrency
control. While Group Scheduling itself facilitates
the creation of arbitrary programming models, Proxy
Execution full integrates the scheduling semantics of
such models with the concurrency primitives in a sys-
tem, creating a truly complete solution.

The use of Group Scheduling can reduce costs by
easing the implementation of complex application se-
mantics, and increases the accuracy and understand-
ability by using direct rather than indirect implemen-
tations. Finally, Group Scheduling can be utilized as
a framework for comparison of different scheduling

10

algorithms and policies. Implementing new ideas in
a single framework allow a fair comparison as tests
can be performed using identical system configura-
tions and hardware profiles.

Further information and links to our soft-
ware can be found at the KUSP website:
http://www.itte.ku.edu/kusp/

References

[1] Liu, C. L. and Layland, James W. Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment Journal of the ACM,
1973.

Lehoczky, J., Sha, L., and Ding, Y. The rate
monotonic scheduling algorithm: exact charac-
terization andaverage case behavior Real-Time
Systems Symposium, 1989.

Tejasvi Aswathanarayana. Integrating con-
currency control & proxy execution support
and provide a framework for deterministic con-
currency testing under the kurt-linux group
scheduling model. Master’s thesis, University
of Kansas, September 2001.

Steven Rostedt and Darren V. Hart. Internals
of the RT Patch. Proceedings of the Linux Sym-
posium, June 2007.

Tejasvi Aswathanarayana, Douglas Niehaus,
Venkita Subramonian, and Christopher Gill.
Design and performance of configurable endsys-
tem scheduling mechanisms. Real-Time and
Embedded Technology and Applications Sympo-
sium, IEEE, 0:32-43, 2005.

Michael Frisbie, Douglas Niehaus, Venkita Sub-
ramonian, and Christopher Gill. Group schedul-
ing in systems software. Parallel and Distributed

Processing Symposium, International, 3:120a,
2004.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-
time synchronization. IEEE Trans. Comput.,
39(9):1175-1185, 1990.

