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ABSTRACT
High-end computing is increasingly I/O bound as compu-
tations become more data-intensive, and data transport
technologies struggle to keep pace with the demands of
large-scale, distributed computations. One approach to
avoiding unnecessary I/O is to move the processing to
the data, as seen in Google’s successful, but relatively
specialized, MapReduce system. This paper discusses our
investigation towards a general solution for enabling in-situ
computation in a peta-scale storage system. We believe our
work with flexible, application-specific structured storage
is the key to addressing the I/O overhead caused by data
partitioning across storage nodes. In order to manage
competing workloads on storage nodes, our research in
system performance management is leveraged. Our ultimate
goal is a general framework for in-situ data-intensive pro-
cessing, indexing, and searching, which we expect to provide
orders of magnitude performance increases for data-intensive
workloads.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: Contiguous repre-
sentations; E.2 [Data Storage Representations]: Object
representation; E.2 [Data Storage Representations]:
Composite structures; H.3 [Information Storage and
Retrieval]: Systems and Software

General Terms
Design, Performance

Keywords
Active storage, structured storage, data-intensive computing

1. INTRODUCTION
High-end computing environments (HEC) have become an

indispensable tool in the scientific community as simulations
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and computational models become increasingly complex.
The use of massively parallel computing environments have
allowed scientists to tackle problems which would otherwise
be intractable. However, as the time and space complexities
of scientific applications grow, the ability for computing
environments to scale is essential to maintaining the utility
of HEC systems. Traditional scientific computations have
largely been CPU bound, benefiting from contemporary,
high-end computing environments which scale well for work-
loads with relatively small I/O requirements. However,
emerging problem domains are requiring data-intensive com-
putations whose workloads are not well suited for today’s
HEC systems. According to a recent DARPA study [17],
exa-scale computing is coming, and has the potential to
require zetta or yotta bytes of storage. This same study
also predicts that the cost of exa-scale computing will be
dominated by data movement, in terms of time, money,
and energy. The predicted I/O demands of next-generation,
extreme-scale computations is our motivation for a new sys-
tem design which combines storage and processing, thereby
offering a high-performance, scalable execution environment
for data-intensive computations.

Our approach to scaling HEC environments for data-
intensive computations is to reduce, and where possible,
eliminate data movement between computations and stor-
age. In-situ computations, or application-specific, co-
located computations executing on storage nodes in service
of distributed applications, can be utilized to achieve sig-
nificant reductions in data movement. However, current
HEC systems are ill-equipped to achieve these optimizations
because the byte stream abstraction commonly used in file
system interfaces hides the application-specific structure of
data and complicates any storage-side execution of opera-
tions that depend on these structures. This paper proposes
a new design for HEC systems which use specifications
of the structure of data, and knowledge of application
behavior, to intelligently distribute data in support of in-
situ computations, and reductions in data movement.

The evolution of file formats, and application-level func-
tions on distributed data, has motivated the creation of
structured storage abstractions. Examples of such systems
are Google’s BigTable[9], Amazon’s SimpleDB[1], Apache’s
CouchDB[2], and Facebook’s Cassandra (an open-source
alternative to BigTable)[3], each of which are designed
for a specialized purpose, and to scale beyond petabyte
capacities. The confluence of application-specific file formats
and interfaces in these systems demonstrate a real and
present need for such features in large scale systems, and
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likely reveal opportunities for advancements in scientific
HEC systems.

Today, parallel file systems stripe data across storage
nodes in order to support application agnostic features
such as replication and scalability. The resulting data
partitioning creates application data dependencies that in-
volve multiple storage nodes, and thus require multiple
network connections. The design of our system makes use
of structured storage, which supports more efficient use
of network resources by minimizing or eliminating inter-
storage node data partitioning. However, even with optimal
efficiency in the usage of network resources, interconnects
will remain a bottleneck for data-intensive computations as
transport technologies fail to keep pace with the demands of
next-generation workloads.

In-situ computation is a promising approach to dealing
with data transport bottlenecks by exploiting parallelism
within clustered petescale systems, such as Blue Gene/P.
The work of the Active Disks[23] project utilized available
parallelism between disk controllers to achieve computation
speed-ups. However, prognostications made in the Active
Disk papers that on-disk processing capacity would scale
with CPU performance have not materialized. While the
performance of past systems warranted the use of inter-
disk parallelism, current technology trends have created
alternative sources of exploitable parallelism. Today we
are seeing a prevalence of large data centers composed of
thousands of low-cost, rack-mounted PCs with gigabytes
of main memory, multi-core CPUs, disk drives providing
terabytes of local storage, and the possibility to achieve
teraflops of local computational power through the addition
of special-purpose GPU units. Making use of available
processing power present in HEC environments will project
the original ideas developed by the Active Disk project
into the context of modern data centers, and the resources
they make available. While in-situ computations introduce
additional requirements of a storage system, we are begin-
ning to see acceptance of system designs that make use
of storage node processing resources in order to achieve
better performance. For example, the SNIA OSD working
group’s OSD-3 draft[12] assigns new levels of responsibility
to storage nodes for the placement of data.

As storage nodes are assigned increasing levels of re-
sponsibility, and applications are decomposed into sub-
computations running at arbitrary locations within the
system, security and quality of service become key factors
in our design. Recent advancements in virtualization and
performance management provide the services necessary to
control distributed computations with a heterogeneous set of
security and quality of service requirements. Virtualization
techniques support host-based performance isolation, as well
as many low-level security features necessary to implement
higher level policies. End-to-end performance management
controls distributed applications whose associated compu-
tations cross system boundaries, and where virtualization-
based performance isolation fails to offer adequate levels of
control (e.g. disk throughput reservations).

In light of these observations and realizations, it is
apparent that changes in HEC environments must be made
in order to support the demands of next-generation, data-
intensive computations. The remainder of this paper focuses
on our proposal for a new HEC system design which offers
scalability for data-intensive workloads. In Section 2 we

present our system requirements, and a detailed design of
our system is explored in Section 3. Our current prototype
is described in Section 4. Related work is covered in Section
5, followed by future work in Section 6, and finally the
conclusion in Section 7.

Definitions
Before proceeding we will define several terms and state a
few assumptions that we hold. When we talk about parallel
file systems we assume a file system running on a large
cluster of servers that can be directly accessed by clients
which run applications that access and store data on the
parallel file system.

storage node refers to a server in a parallel file system
that is responsible for managing and offering access to
some part of the storage managed by the parallel file
system.

in-situ computation means executing computations on
data where that data is stored, as opposed to trans-
ferring data from its current location to the location
of a separate processing resource. In the context of
a parallel file system this means the storage node
executing computations which access, and possibly
alter, data resident on the storage they manage.

end-to-end is used in our performance management dis-
cussion to mean all shared resources on a client, all
shared resources on a server, and the communications
channel between them.

application-specific data structures is used to refer to
the structures and format of data specific to an
application. Examples are astrological data being
organized into arrays that correspond to sections of
the sky, or performance monitoring software storing
point-in-time performance values in an array indexed
by time.

data element is a specific instance of an application-
specific data structure. In the case of the performance
monitoring software example, a data element could be
a vector that stores power consumption of a CPU in
100 millisecond intervals for the duration of a given
test.

2. SYSTEM REQUIREMENTS
The key to optimizing the performance of data-intensive

computations is to minimize data movement. Data move-
ment can be reduced by using in-situ computations. This
section explains the components that we feel will enable in-
situ computations.

Structured Storage
Structured Storage refers to the ability of a distributed
storage system to use application and user supplied knowl-
edge to impose structure on, and intelligently place data
in a distributed environment. New functionality is made
possible, for example our system can use this new found
information to eliminate inter-storage node data partition-
ing by requiring that application specific data elements
be managed by single storage nodes. For example, if
applications store array-based data sets, storage systems
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with knowledge of this structure can take measures to ensure
array elements are stored contiguously. This will require
taking into consideration the trade-off between throughput
and latency, in that current parallel file systems partition
data over many spindles to increase throughput while also
increasing latency when applications access specific data el-
ements that span spindles, due to having to execute multiple
accesses which each have fixed time costs. Therefore, it may
not be possible to maintain reasonable throughput speeds
and also guarantee application data elements are contained
on a single storage node.

Programming Models
Programming models are used by developers to express
computations in terms of functionality, as well as policy.
When programming models expose interfaces customized for
particular applications, developers can take advantage of a
more natural way of expressing their computations, easing
application development, and facilitating more accurate
reasoning about program behavior. For example, when
only a byte-stream interface is available, developers of HEC
applications must create custom code or use libraries to
map their application logic onto the byte-stream interface.
The use of libraries to hide this complexity is common, but
doesn’t allow any of the knowledge of the structure of data to
be used to support lower-level optimizations. Programming
models and structured storage are complementary compo-
nents of the system. While programming models provide
an interface through which data is accessed, and semantics
and policy are expressed, structured storage facilitates the
efficient implementation of programming models which may
require specialized fragmentation policies in order to support
in-situ computations, or optimize for access patterns.

Quality of Service
Contemporary HEC environments support simultaneous
execution of multiple computations, each accessing services
and resources provided by the storage system. Provid-
ing quality of service guarantees to applications is diffi-
cult because storage nodes are required to service unpre-
dictable application requests, and may not have knowledge
of application-level policies. QoS in storage systems is also
challenging because of disk arm positions and seek times that
can easily dominate retrieval latencies, making performance
isolation between users non-trivial. This problem becomes
more difficult with the introduction of in-situ computations
that compete for the resources of a storage node whose policy
also includes serving external data requests. In order to
provide quality of service guarantees to applications in a
distributed system, which may contain an arbitrary mix of
in-situ computations and policies, end-to-end performance
management is essential. To support performance guaran-
tees made to applications, resources must be controlled at
all levels of the system with a unified view of system policy.

Scalability, Availability, and Durability
Distributed storage systems offer many features and guar-
antees such as reliability, recovery, and snapshots that users
have come to expect. However, supporting structured
storage and in-situ operations in a safe, scalable, and feature
rich system presents many challenges, which we discuss in
Section 3.5.

3. SYSTEM DESIGN

3.1 Structured Storage
The layers of the system related to structured storage are

presented in Figure 1. At the highest level, Application Data
represents the abstraction at which applications interact
with the system. An example of this is an application
running a simulation that stores measurement data in
an array format. At this level applications construct
specifications of the data they interact with, and make these
specifications available to the storage system. Application
dictated alignment occurs within the storage system, and
aligns data according to the specifications passed in by the
application. An example of this is when the aforementioned
simulation application writes out multiple arrays. In this
case we want to make sure that each array is stored in its
entirety on a single storage node, so the application data is
aligned accordingly. Below that, logically, a similar process
happens where file system influenced alignment occurs. In
our example, the arrays may be realigned again, possibly
on file system block boundaries, but this should not violate
the application specified alignment. The file system based
alignment is meant to complement the application based
alignment. At the lowest level is the storage node which
stores file system extents in some fashion. File system
extents correspond to actual blocks on disk(s) located at
storage nodes.

Communication costs are most often incurred when data is
fragmented, and additional storage nodes must be contacted
to satisfy data requests. Current parallel file systems
are designed to partition data, and distribute that data
according to a set of semantics which support general policy
goals such as data balancing, redundancy, and reliability.
However, applications logically align computations with
application-specific knowledge of data structure, and when
the logical alignment of a computation’s access to data
deviates from the placement of data in the underlying file
system, such as when an application accesses a data element
that spans nodes as a result of preceding data in the same
file and not purely due to the data elements size, unaligned
data accesses result and additional communication costs are
incurred. Thus our system will take into account knowledge
of the structure of application data when aligning and
distributing data among storage nodes.

A function we will build into our system is the ability
to enforce application data alignment in storage. This
functionality comes at a cost in that data which was
previously spread across multiple nodes in order to achieve
higher total bandwidth at the point the data is read off of
hard drives is now limited to the bandwidth of a single
hard drive. In preventing fragmentation we minimize
communication overhead and simplify the models for in-situ
processing. This functionality will be enabled at the ADT
level, described in Section 3.3, and we believe that the ability
to align data in this fashion is a noteworthy capability of our
system. As such, we explain the details and consequences of
data alignment along application data element boundaries.

Eliminating fragmentation of application data elements
requires knowledge of the structure of data being stored in
the file system such that storage nodes manage only whole
data elements. Assigning a data element to a storage node
that results in a “remainder” being stored else where will
prompt complete reassignment of the original element to an
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Figure 1: Stages of Data Management Within
Application Write Stream

alternative node. The motivation for this requirement is to
allow clients to access whole data elements with a single
connection to a storage node. Of course this strategy will
not work when data elements do not fit on a single node.
However, many scientific workloads operate on structured
data composed of smaller elements that do fit on single
nodes. We do not address in this paper the problems that
arise when the structure of application-specific data is not
decomposable into appropriately sized chunks. Additionally,
when in-situ computations execute on a storage node,
data elements must be present in the form specified by
applications in order for in-situ computations to act without
further communication. Figure 2 illustrates two system
fragmentation policies. On the left, two clients access Data
A and Data B, which are striped across multiple storage
nodes. For the sake of example, assume they are each arrays
from different simulation experiments and are contained in
separate files. This data layout requires clients to access
multiple nodes to fulfill a request. On the right, Data A
and Data B represent application-defined data elements that
are stored on individual nodes. As can be seen, In-situ
computations accessing data elements within this system do
not require additional data fetches.

Structured storage is the basis on which we build the rest
of our system. It is crucial in enabling in-situ processing,
which we expand upon in Section 3.2, and heavily influences
our definition and use of ADTs, which are detailed in
Section 3.3.

3.2 In-situ Processing
The idea of moving computations closer to the data they

depend on is not new. Much of the previous research in this
area can be seen in the Active Disks project [23]. However,
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Figure 2: Two clients, each accessing a single piece
of data in a parallel file system without (left) and
with (right) data alignment. The reduction in
communication connections is the result of data
alignment

recent advances have spurred renewed interest in the topic of
in-situ computations within storage systems. For example,
storage systems using a design that makes use of object
stores (OSDs) are moving towards an architecture that helps
more easily express and address structured storage needs.
Additionally, many systems make use of storage nodes with
significant amounts of processing power near the disk. The
Active Disks project demonstrated performance increases by
moving computations from a host to an on-disk co-processor,
eliminating the disk-to-host interconnect. However, this ar-
chitecture is impractical for large, distributed computations
that require modern execution environments, and enhanced
network communication features, both of which are required
to interact with application-level data structures that span
multiple storage nodes.

While the arguments posited by Riedel generally hold
true today, in that the aggregate power of many processors
near data will be more powerful than moving the data to
remote processors in certain circumstances, the limiting link
is no longer the system bus, but rather inter-storage node
communication links. In other words, the delineation that
used to be placed between host CPU and disk processor is
now manifest by the delineation between computing nodes
and storage nodes. The limitation in the communication link
is not just one of speed, but also of latency and capacity. It is
in light of this that we view the appropriate computational
unit to be the storage node (in the context of a modern
parallel file system), and not an on-disk processor.

As we’ve stated, the logical way to avoid the current
bottleneck of inter-storage node communication is to move
the processing to the data. We envision this happening
via developer code interacting with ADTs implemented
within the storage system, the storage system identifying
the storage nodes with data resident which the application
needs access to, and then the ADTs providing access to
the data on the storage nodes. When application code is
executed within our system it will need to specify parameters
such as the files being accessed, how its output is to be
handled, and execution performance requirements, among
others. We classify this latter requirement into Performance
Management, which we discuss in Section 3.4.

An additional benefit is made possible by the combination
of the structure of data in a parallel file system with our
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data alignment requirement. Since the contents of files
can be split over multiple storage nodes and the data
on each storage node can be acted upon independently,
it is now possible to realize intra-file parallelism, in ad-
dition to the inter-file parallelism leveraged by previous
systems that combined storage with computation, without
incurring significant communication overhead. Significant
performance gains are possible in light of this new found
level of parallelism, which was not possible when files were
constrained to existing entirely on a single disk with a single
processor, as in previous systems that attempted to facilitate
in-situ computations.

3.3 Abstract Data Types
Drawing on the idea that structured storage facilitates

aligned data access, and that storage system programming
models bridge the gap between data layout and application-
centric views of data, we draw an analogy to the con-
cept of an abstract data type (ADT). Specifically, an
ADT is a specification of data, and the interface through
which operations are applied to the data. Storage system
oriented ADTs thus use well-defined structured storage
as the specification of data, and export an interface to
clients specific to a particular abstract data type, and thus
to a particular data structure. The power of an ADT
inspired architecture in storage systems facilitates adaptive
performance optimizations by adjusting ADT instances for
particular applications, such as preventing data element
fragmentation as defined in Section 3.1. Furthermore,
because data structure and access methods are well-defined
through a specification, ADT transformations can be defined
that provide for maximum system flexibility.

Storage system based ADTs also provide a convenient
abstraction level for expressions of application policy. An
ADT tailored for stream-based multimedia applications may
require ADT functions (e.g. ”play”) to have significantly
different performance requirements than other functions of
the same ADT. Additionally, separate instances of the same
ADT serving distinct applications may have parameterized
policies which are fully defined by the application interacting
with the ADT instance. Supporting rich abstractions
through ADTs will require general treatments at all levels
of the system.

3.4 Performance Management
Distributed file systems rely on the ability of storage

nodes to service requests related to the data managed by
a node. In contemporary distributed file systems, storage
nodes require relatively small amounts of computational
ability, and usually operate on dedicated servers. As a result,
most processing which executes on storage nodes does so on
behalf of applications remotely accessing the data managed
by a node. In the general case, organization-level policies
may dictate the importance of distributed applications, such
as the time-share received, or QoS guarantees. However, in
current parallel file systems, storage nodes service requests
independent of system-wide policies, offering only best-effort
service. Enabling in-situ computations on a storage node
presents additional challenges as computations compete for
shared resources, and affect the ability of a storage node to
satisfy the behavioral constraints of applications.

Managing the performance of distributed, data-intensive
applications is a problem that requires end-to-end solutions.

Multiple applications with diverse performance require-
ments share many resources in HEC environments. For
example, data must be transmitted over shared network con-
nections, multiple applications indirectly share the resources
of storage nodes, and collocated computations directly make
use of host resources. Leveraging our research in end-to-
end performance management of distributed applications,
including managing the performance of the network, disk
I/O scheduling, and CPU scheduling [7, 22, 15], enables
us to make performance guarantees for both applications
accessing data and in-situ computations.

3.5 Scalability, Availability, and Durability
Distributed storage systems offer many types of services

and guarantees. These range from reliability and recov-
ery, to scalability and snapshots. We have considerable
background knowledge in implementing these services from
our previous work with Ceph[28]. Furthermore, distributed
systems supporting high-profile, long-running computations,
such as those used in the scientific community, must sup-
ply users with safety guarantees that users have come to
expect. The semantics of these features and guarantees
are made in today’s storage systems without application-
specific knowledge. While this may simplify algorithms and
implementations, incorporating application-specific knowl-
edge into the system is required to correctly support the co-
existence of application-specific semantics (i.e. structured
storage), and the semantics of conflicting system features,
such as replication and fragmentation.

4. CURRENT PROTOTYPE
This paper has illustrated the complex design space for

a scalable HEC environment designed for data-intensive
computations. While we have presented many design
requirements, including specific design details, our current
prototype system is only in its preliminary stages, and is
not necessarily representative of future prototypes. The
system is a Python-based framework for exploring storage
ADTs in the context of a distributed object-based storage
system. The system allows a developer to create customized
programming models on top of an object-based storage
abstraction. Programming models are created by defining
a client-side interface, and any number of remote-procedure
calls which execute on object-storage devices in support of
client-side operations. A unified object-addressing scheme is
used by programming models to express a mapping between
the data view at client-side, and physical storage within
the storage cluster. The system contains no performance
management, security, or policy representation. Using the
system we have examined how traditional byte streams,
and a distributed skip list data structure map onto the
architecture, and have found it natural to reason about
distributed data structures implemented in our system
because of the unified view of the implementation (i.e. data
type implementations cross-cut system layers, from client-
side to the OSD layer). As we discover new abstractions
on which to build ADTs that take into account our list of
system requirements, additional prototypes will be designed.
We anticipate that the next iteration of our system will be
implemented within the Ceph object-based storage system
[28].

A simple example of how a client application would
interact with the skiplist ADT can be seen if we consider
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the simple act of inserting a sequence of random integers.
The application would instantiate a skiplist object, insert
each element one-by-one using an “insert()” call. Items
can be retrieved via “retrieve()” and deleted via “remove()”
calls. Within the storage system the elements are kept in
distributed skiplists which grow and contract as data is
inserted and removed. The performance characteristics of
a single skip list are maintained in the larger, distributed
skiplist and an “iterate()” function allows for all data in the
structure to be accessed, in key order.

While this example is very simple it should help form a
mental image of how application code interacts with our
system. It’s simple to imagine that the skip list could be
replaced with a B-* tree and the application code would not
have to change. Functions in the storage system could be
optimized for certain workloads, insert-heavy versus read-
heavy for example, and data structures could even morph
on demand, an array could decide to change itself into a
tree structure once it has grown to a certain point, dictated
by a preset policy, or if an application requested the storage
system to make the conversion.

5. RELATED WORK
Our research draws inspiration from several different ar-

eas, including work in structured storage, in-situ processing,
parallel file systems, and security.

5.1 Structured Storage
Structured storage in an idea that was been around for

several years [19]. In Boxwood, the authors recognized
that building complex data structures on top of simple
storage devices was difficult. Their means of addressing this
impediment was implementing structures within the storage
infrastructure. Like Boxwood we implement structure
within our storage structure, but we take the principle of
structuring data further than Boxwood did. In addition
to creating structures within storage that applications can
leverage as they see fit, our system also aligns data along
several boundaries (application dictated boundaries such
as the start of arrays or vectors and file system based
boundaries such as the beginning of a block or its equivalent)
and provides access to application data elements as they
reside within the storage system, by which we mean in-
situ computations can access elements on storage nodes
without having to read the file from the beginning in order
to determine where a specific data element begins in the
stored data.

Structured storage is typically thought of as series of fixed
size records, as in Boxwood and Vesta [19, 10]. Our system
generalizes the idea of structured storage to accommodate
arbitrary application data, while adhering to application and
file system specific requirements related to fragmentation.

The NetCDF and HDF5 file formats, while not being
examples of structured storage in the sense that a process
on a storage node would not necessarily know where a
given data element started in the byte-stream, highlight a
potential benefit of structured storage. They each contain
a header which describes the layout of data for the rest
of the file. By embedding a header they allow different
applications to process the data contained within them in
its entirety or on a selective basis. This is more of a
portability concern than it is a concern for processing data
in-situ but the principle is relative to structured storage;

propagating a dataset’s NetCDF or HDF5 structure down
into storage would allow for processing in storage as well as
data portability.

The existence of the ADIOS [18] system is implicit
recognition that adding a layer which reformats I/O for the
specific storage layer being written to can yield significant
performance improvements. This insight is echoed by testing
done at Argonne National Laboratory [24] which found that
significant performance gains could be achieved if file system
specific information was used to align application data.
These facts were the impetus for our decision to include file
system parameters in the alignment process of application
data.

Another paper on structured storage[13] makes the argu-
ment that modern data sets requires something in-between a
file system, unstructured and rudimentary, and a database,
too much overhead and too many unused features. The
authors contend that a storage system should never hide
expressive power from applications. We take this ethos,
combined with the performance related findings from Ar-
gonne mentioned in the previous paragraph, a step further
and state that applications should be actively given the
ability to express themselves to a greater degree than has
been possible to-date in terms of affecting data placement
within storage systems. We believe that it is through this
increased expression that functionality can be expanded and
performance increased, as seen at Argonne.

Stonebraker [27] makes a case for a purpose built, simpli-
fied data base for the scientific community that leverages
simple structures and allows for user-defined application
code. This proposed system could easily be implemented
within our work; a fact which we perceive as a portent that
we are on the right track.

5.2 Moving Computations to Data
Active Disks[23], and related work[16, 4], leveraged the

processing capability of disk controllers and the relative
abundance of disk drives attached to hosts to execute
computations at the data. Our system makes use of this
method of achieving better parallel performance; however
our system, making note of recent trends in server hardware,
deviates from the original Active Disks paper in a few
ways. Active Disks made the assumption that an entire
file was resident on a given disk. Since HEC systems
make use of distributed file systems, which fragment files
in order to realize throughput parallelism, we can not make
this assumption. Instead, we use the information provided
by the application, which is the source of the data, to
access portions of a file at data element boundaries and
thereby enable access to application data without needing
the entire file to be present on a given storage node. Another
characteristic of the Active Disk model is that the specified
processing was performed on file access. We find this aspect
of Active Disks to be too limiting and do not impose it upon
our system.

Google’s MapReduce [11] is a very successful parallel
computing system which leverages application specified
information to partition input data as that data is read from
a storage system. This parallelism allows MapReduce to
automatically distribute the processing of large data sets and
achieves impressive throughput rates on dedicated compute
clusters. While this model of parallelization works well
for a specific class of computations, there are aspects of
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MapReduce while preclude it from being a general model
for data-intensive computing. Namely, the intentionally
limited programming model, which insulates programmers
from needing to understand parallel programming but also
limits the expressiveness that is available to the programmer.

Dryad [14] is a system that allows an application developer
to use a dataflow graph to specify stages of execution and
communications channels between these phases. At run-
time, Dryad uses this information to execute phases on as
many of the available hosts as the derived graph allows. This
is another example of leveraging application specified infor-
mation, in this case computation inter-relatedness, to realize
parallel performance gains. The ability to programmatically
express multiple stages of processing and how those phases
are related is important if systems are to address workloads
that go beyond simple, “embarrassingly parallel” processing
of individual elements from within a file. Accordingly, our
system will have a similar method for expressing the order
of and relationship between phases of computation.

Other work in the area of in-situ computations[26] points
to the need for application code to be easily and dynamically
transferred to the servers on which it will execute (storage
nodes in our case). An issue raised in this paper, which
we address below, is that new security questions are raised
when user-written application code is executed inside of a
distributed file system.

Previous work in the area of in-situ computations[30]
makes it obvious that the application developer needs a
means to succinctly express notions like ordering constraints
and sub-elements of application structures, which will be
addressed via appropriate programming models being devel-
oped. The Wickremesinghe paper also espouses the opinion,
which we share, that ensuring collocated processing doesn’t
interfere with the storage node’s data-serving responsibilities
is a top priority.

Current systems that enable in-situ computations either
execute on dedicated processing nodes[14, 31], which are
disjoint from the storage nodes, or impose constrained
programming models on the developer [30] for the sake
of enabling related functionality, in this case static code
analysis for the purpose of performance management. Nei-
ther of these seems appropriate for the system that we are
developing as the former requires data movement, which we
are striving to minimize, and the latter places a burden on
the developer in order to deliver a benefit, storage node QoS,
which we can provide via much simpler and less intrusive
methods.

The work that comes the closest to the model of in-
situ computations that we envision is the Active Storage in
Lustre work being done at PNNL [20]. This system works
at the storage node level, an OSD server in their case, and
allows for application code to operate on data being stored
in the parallel file system. The PNNL system requires that
entire files be stored on a given node if the application code
is to operate on the data. This requirement precludes the
writing of large files if parallel file-systems are to be used,
which is a huge limitation in HEC. The lack of application
specific information about the data that makes up a file also
precludes a class of optimizations that we seek to capitalize
on with our work.

5.3 Parallel File Systems
Scientific data-intensive HEC environments rely heavily

on distributed file systems for data storage. This de-
pendency is caused by the throughput requirements of
the computations being done within these environments.
Examples of distributed file systems used in scientific HEC
systems include: UCSC’s Ceph, Clemson’s PVFS, IBM’s
GPFS, Panasas’ PanFS and Sun’s Lustre [28, 8, 25, 29,
6]. These file systems fragment data without knowledge
of application data structure. This behavior results in an
application either needing to ask for specific byte ranges
from the file system, which will likely cause communication
with or among multiple storage nodes, or the entire file
having to be read from the storage system, which is even
slower. By implementing our system on top of existing
parallel file systems we can leverage their ability to provide
high performance access to storage while adding further
performance gains, via data alignment, and increased func-
tionality, in the form of allowing in-situ data computation.

Another limiting factor of parallel file systems being
used in scientific HEC is the number of hosts attempting
concurrent communication with the storage nodes. The
large number of hosts in the HEC systems are overwhelming
storage nodes ability to service network connections reliably
and efficiently. This observation is confirmed by tests per-
formed at Agronne National Laboratory[24]. In recognition
of this issue, there are already systems in-use at Argonne
which coalesce I/O operations for multiple hosts within
a designated representative node, which then writes the
aggregated data to the parallel file system. This system of
I/O forwarding is indicative of the fact that the distributed
storage system cannot handle the current number of clients
that are attempting to access it at the same time without
performance degradation. This raises serious questions
about the ability of current systems to scale in light of the
increasing demands of data-intensive scientific computing
coupled with the prevailing tendency to grow computational
clusters by adding more nodes.

5.4 QoS and Security
Allowing user-developed code to execute within a storage

system introduces new security concerns[26]. For now we
are planning on using a simple security system based on the
Unix ACL model to allow applications to only access files, or
portions of files, that the user which that the application is
running as has access to. Further investigation of this topic
is deferred to future work.

We will leverage QoS work done in our lab [21, 5]
as a basis for developing a holistic QoS model.The QoS
enforcement will also contain provisions for dealing with
unruly application code. Denial-of-service attacks will be
entirely prevented via virtualization of resources on the
storage node and policy based options will exist to allow
parameters designed to limit total resource use by an
application.

6. FUTURE WORK
There are several topics where we are deferring to a later

date. Scalability as it pertains to in-situ computations,
failure recovery for application code and incorporating
application support to existing cluster management infras-
tructure are all needed for this to be a complete system.
We believe that this type of a system opens up itself
to novel methods of indexing and searching, which we
will investigate once we have a working prototype. A
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large software company has indicated interest in partnering
with us to research building a limited database, similar to
Stonebraker’s work, on top of our system once we have
completed our preliminary research.

7. CONCLUSION
Current storage systems are not meeting the needs of

the scientific HEC community. The rise of data-intensive
computations is exposing issues caused by the separation of
processing and storage. In order to alleviate these issues and
enable further advances in data-intensive scientific research
a new storage system needs to be created. We have made
an argument that by employing structured storage, advances
in performance management, well-constructed programming
models and abstract data type-inspired interfaces along with
existing parallel file systems it is possible to construct a
system that has better data-serving performance, enables in-
situ computations and can provide the requisite reliability
and robustness while allowing the storage system to scale to
larger sized deployments than is currently possible.
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