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Improving Trace-Based Parallel Debugging
Theodore R. Haining

ABSTRACT

Parallel programs sometimes execute unreliably because the improper use of synchroniz-
ing constructs introduces data races. These data races can cause non-deterministic effects
in the internal data state of the program, resulting in deadlock or incorrect results. To over-
come this difficulty, the location of these data races must be found or otherwise eliminated
(e.g. new languages). A variety of techniques currently exist to detect such races. These
methods generally fall into one of three major groups: those that attempt to locate races
at compile time using static analysis, those that locate races at run-time using some kind
of monitor, or those that locate races after execution completes by using traces.

This thesis will present and analyze certain aspects of a new algorithm designed for use
in trace analysis, based on the work of Helmbold, McDowell, and Wang. Test results show
that the new algorithm is always able to find more data races than the algorithm it is meant
to replace. A characterization of the approach motivating this algorithm indicates where
it succeeds in finding data races, and where (and why) it fails. A proof establishes that
the new algorithm finds a non-empty subset of the races which exist for all executions of
a parallel program on the same set of inputs. Test results indicate the effectiveness of the
algorithm with random test traces of different length. Finally, an outline of the procedures
used to test the new algorithm establish strength of the conclusions presented here based

on the depth and breadth of the set of inputs used as test data.
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Chapter 1
Introduction

Programmers have difficulty visualizing the behavior of parallel programs. As a result, con-
current tasks are often insufficiently or incorrectly synchronized, causing races. Therefore,
to eliminate non-deterministic behavior, it must be possible to detect races. To find races,
better software tools are required; tools which are capable of providing information about
the interaction of concurrent tasks.

At this time, three major approaches have been applied to the problem of race detec-
tion: static analysis [McD89], run time (on-the-fly) analysis [MC92], and post-mortem trace
analysis [EGP89, HMW93]. None of them is able to find all the races that potentially exist
in arbitrary programs. Static analysis attempts to find races at compile time by computing
all possible concurrency states for the program under examination. This has the advantage
of examining all possible control states of concurrent tasks at every point of execution,
but, examination of every concurrency state has been shown to be an NP-hard problem
[Tay83]. On-the-fly analysis attempts to locate possible races by using state information
taken from the program as the program runs. It has the potential benefit of using less space
than trace analysis because some data is used and discarded. Trace based analysis typically
uses a listing of variable accesses, event ids and other state information recorded during
a program execution. This information is analyzed to determine possible data races. It
uses large amounts of memory to hold trace data and has been found to be co-NP hard for
arbitrary programs [NM90]. It does have the advantage that it may be used to find races

in executions of the program other than the one that actually occurred.



This thesis focuses on the problem of approximating event orders in trace based analysis.
An analysis tool could correctly compute the partial order of events based on a program
trace, use this information to find races, and then report this result. Because this problem
is not decidable in polynomial time for arbitrary programs, algorithms must be used which
approximate this process. This work proposes an improved method for finding an approxi-
mation which is practical both in terms of computational cost of the analysis and amount
of race information returned on completion.

Helmbold, McDowell, and Wang produced a three stage algorithm for analyzing traces
of programs using either semaphore style synchronization, or traces of programs using IBM
Parallel Fortran [HMW93]. The algorithm generates a partial order of events from an
inferred program based on the trace under examination. (The inferred program is the same
as the program generating the trace, except that all conditional branches are replaced with
unconditional branches resolved in the same direction as they occurred in the execution
generating the trace [HMW93].) The partial order represents the “always happens before”
relationships between events in the inferred program. (If an event e; “always happens
before” an event e, then e; must precede e, in all executions of the inferred program where
ez occurs [HMW93].) Events not ordered in this partial order are used to report races.

The results of this event ordering analysis have strengths and weaknesses. Since results
are based on the “always happens before” ordering, the produced partial order is said to be
safe, meaning that the partial order can be used to find races in all executions consistent
with the program inferred from the trace in numbers and types of events. The results of
the three algorithms indicate a non-empty subset of the races that actually occurred in the
program run from which the trace is taken. Because the ordering of events in the program
is approximate, not all order relations may be reported, leading to spurious race reports.

Testing has resulted in the refinement of the third stage of the algorithm which expands
the number of “always happens before” relations in a partial order of the events in the

program. This thesis presents:

e the revised algorithm,



e a proof that the partial order it produces is safe,
e an implementation of the algorithm in a testing application, and

e numerical data showing the improvement detection capability of the algorithm over

the one it is meant to replace.

The remainder of this chapter outlines the notation that will be used in subsequent
chapters of the work and briefly presents the previous algorithm. Chapter 2 presents the
new algorithm with the supporting proof of its ability to safely add event order information.
Chapter 3 details the implementation of the algorithm. Chapter 4 provides numerical data
showing the improvement of the new algorithm taken over long test runs. Finally, the last
chapter discusses future directions that this research could take and provides a summation

of the results presented in this thesis.

1.1 A Virtual Time Model

For the purpose of this work, a parallel program is a logical construct containing a finite
number of tasks. Each task consists of a unique identifier and is a sequence of synchro-
nization operations and data manipulations which execute in linear order. An event is
considered to be a significant step in program execution. This thesis deals with computing
partial orders of events. Therefore, the events of interest in a program trace are synchro-
nization events. A trace of a parallel program to be used as input for analysis represents
one possible total ordering of events in the program as it executes.

This work will deal with programs employing counting semaphore synchronization.
When this scheme is used, two operations, Wait and Signal,' are defined for each semaphore.
Therefore, each synchronization event will be a tuple containing: the operation completed
(Wait or Signal), the semaphore which was affected, and the id of the task that performed

the operation.

'Wait and Signal are used here in place of the P and V to better illustrate the meaning of each operation.



Events are ordered using integer-valued timestamps [Fid88]. Each task maintains its
own count of the number of events it has executed, which are updated every time the task
executes an event. Each task also maintains counters recording the number of events that
all other tasks have executed. These counters get updated when the task synchronizes
with other tasks. The current values of local and non-local counters that a task maintains
form a timestamp for each event in the task. Sequences of events can then be totally
or partially ordered by assignments of timestamps to events. Such event orders can be
modified by changing the timestamps associated with events rather than adding, deleting,
or re-ordering event lists.

An event e with timestamp 7 precedes another event ¢/ with timestamp 7’ in a partial
order if and only if every component of 7 is less than or equal to the corresponding compo-
nent of /. Events e and e’ are unrelated in the partial order when both some component
of 7 is greater than the corresponding component of 7/, and some (other) component of 7/

is greater than the corresponding component in 7.

Definition 1.1 For any two timestamps T, 7o in 4"
1. 1 < 1 <= Vi(n1[i] < 72[i])
2. M<m<=1<nATL#T
3. || <= (11 < T2) A2 < T1).

where n is the number of tasks in the program.
Timestamp 11 is earlier than timestamp T (or 7o is later than 71) in the partial order

when 11 < 72. Similarly, 71 and T2 are unordered in the partial order when 11 || T2.
It is now convenient to define a few common functions that will be used in this work:

Definition 1.2 For any m timestamps T1,..., Ty of Z"

e ming(7i,...,Tm),k > 0 is the vector of Z™ whose ith component is the k' smallest

element in the collection Ti[i], 72[3], ..., Tm[d],



e max(7i,...,Tm) is the vector in Z™ whose ith component is max(7i[i, ..., Tn[i])-

Conventionally, ming(71,...,Tn) is defined to be 0, the all-zero vector.

As an example, ming([1, 2], [1, 3], [2,4],[2,5], [3,2]) is [2,3]. ming(r1,...,7m) the k' is often
called component-wise minimum of 11,...,7n, and max(ry,...,7,) the component-wise

mazimum of 71, ..., 7.

Definition 1.3 Given an event e performed by task T; in a causal trace, let 7#(e) be the
timestamp containing the local event count for e (ome more than the number of events

previously performed by T; in the trace) in the ith component and zeros elsewhere.

Definition 1.4 Given an event e performed by task T; in a causal trace, let eP denote the

previous event performed by T; in that trace if such an event exists.

1.2 Algorithms for Generating a Partial Order

Since the new part of the algorithm that this thesis will present improves on a section of
the trace analysis of Helmbold, McDowell and Wang, it is useful to review the details of
each of the three algorithms they developed as a part of their approach.

To obtain an initial partial order for an execution trace, on which further analysis can be
based, they first use an algorithm based on the one provided in Fidge [Fid88] and Mattern
[Mat88]. This process associates a Wait event with an unmatched Signal event on the
same semaphore, creating a partial order which pairs every Wait event with a Signal event
which allowed it to precede. This generates a partial order that contains orderings that
are not “always happens before” orderings. Instead, this partial order represents the causal
orderings that did occur in a particular execution.

To generalize this partial order information to make it valid for all possible executions
containing the same events, they use a process called rewinding (Algorithm 1.2) to decouple

Wait events from specific Signal events. After rewinding, every Wait event has a time vector



Algorithm 1.1 (Initialize)
Given a causal trace, each event e is assigned a time vector, T(e), as follows:

for each event e in the trace
if e is a Wait event on semaphore S,
let €' be Signal event unblocking e;
set vs = T(€');

else
set vy = 0, the all zero vector;
end if;
set 7(e) = max(7(eP), 77 (e),vs);
end for;

Algorithm 1.2 (Rewind)
Repeat the following procedure until no further changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
let e] ...e; be all the Signal events on S;

set vy = min(7(ef),...,7(ef));
else
set v; = 0, the all zero vector;
end if;
set 7(e) = max(7(eP), 7% (e),vs);
end for;

that reflects the assumption that any Signal (on the same semaphore) could have been the
Signal that triggered the Wait.

Unfortunately, the newly established order relation is safe but too conservative because
some “always happens before” ordering arcs are deleted as a part of the rewind procedure.

Some of these arcs can be restored through the application of the following observations:

Observation 1.2.1 If some wait event e, on semaphore A is known to follow n other waits
on semaphore A (given the safe partial order already computed) then e, must follow n + 1

signal events on semaphore A. Thus additional edges can be inserted into the partial order



by increasing the (vector) timestamp for e, so that each component is at least as big as the

corresponding components in n—+ 1 of the timestamps for the signal events on semaphore A.

Observation 1.2.2 If one of the n + 1 signals, call it es, needed in observation 1.2.1 is
known to be preceded by an additional wait event on semaphore A that is not one of the
n wait events known to precede event ey, then m + 2 signals occur before e,, whenever eg

occurs before ey,.

This second observation implies that n + 1 signals other than e; occur before e,. In
the program of Figure 1.1, the S; event in task D corresponds to the e; event in Observa-
tion 1.2.2. They call this phenomenon shadowing, as the “shadow” cast by the preceding

wait prevents e; from satisfying the signals needed by ey,.

Task A Task B Task C Task D

S

- - - =

@

—= Arcs implied by Observation 1
- > Arcs implied by Observation 2

Figure 1.1: An Example of Observations 2.1 and 2.2. Note that the program can deadlock
with Task D waiting on semaphore 1.

The Expand Algorithm (Algorithm 1.3) applies these two observations as it cycles
through the entire timestamp representation of a trace. It does this by considering the
set of Signal events, R, and the set of Wait of events, W, that exist in relation to the Wait
event e under consideration and its predecessor e?. Observation 1.2.2 is applied during the

k™ minimum of R(e)

construction of R(e). It then employs Observation 1.2.1 taking the
to create the timestamp v,. Finally, the Tax operation is used to combine v,, 7#(e), and

7(eP) to create the new timestamp for e.



Algorithm 1.3 (Expand)
Repeat the following procedure until no more changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
let W(e) = {ey : ey is a Wait event on S, 7(ey) < 7(e)};
let R(e) = {é: é is a Signal event on S, 7(e) £ 7(é),
and é is not shadowed with respect to e};
let k =| W(e) |;
let vy = ming(7(é) : é € R(e));
set 7(e) = max(7(eP), 77 (€),vs);
else
set 7(e) = max(7(eP), 77 (e));
end if;
end for;

1.3 Related Work

Much research effort has been directed toward finding partial orders of events in situations
using anonymous synchronization primitives in parallel and distributed systems. This work
has been motivated by the existence of several parallel programming languages which use
anonymous communication methods like locks, semaphores, and monitors.

Emrath, Ghosh, and Padua [EGP89] use a combination of static and trace analysis
to debug parallel programs in Cedar Fortran using fork/join synchronization with Post,
Wait, and Clear events. They use static analysis to generate a DAG called a Task Graph

containing four kinds of arcs representing types of event ordering:
e Sequential Ordering — ordering due to one event following another in the same task
e Start Ordering — ordering due to the start of a created task following a fork event
e Wait Ordering — ordering due to a join event following every event in a task

e Synchronization Ordering — ordering due to the use of post, wait, and clear events.
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Since static analysis may fail to successfully give a definite dependence relation between
program statements which execute several times, it may provide incomplete synchronization
ordering information.

Trace analysis is used to add synchronization ordering arcs to the Task Graph. This
analysis employs an algorithm called SYNC which is similar to Algorithm 1.3 as presented
in this thesis. For each Wait event w, it finds a set of Post events that might have triggered
w. This is the set of all Posts on the same event minus all Posts that follow w or are cleared
before w is executed. It computes the set of closest common ancestors of this set of Posts.
Finally, an arc is added to the Task Graph between every member of this set of closest
ancestors and the Wait event w.

SYNC and Algorithm 1.3 differ in two major ways. First, Algorithm 1.3 modifies event
orders using timestamps, saving the computational overhead of recalculating ancestor sets
for every pass of the algorithm. Secondly, Algorithm 1.3 may find more ordering relation-
ships.

Netzer and Miller [NM91] seek to use static analysis with trace analysis to reduce the
number of spurious race reports produced when analyzing traces. They do this by augment-
ing the graph of temporal order relations with shared-data dependencies and event-control
information to determine if reported races are feasible (could actually occur) or infeasible
(could not occur). Where this information is inexact, they specify a set of races which are
tangled, meaning that at least one race in the set is guaranteed to be feasible, but the rest
of the races in the tangle may be infeasible.

In this form of trace analysis, program execution PP is a triple consisting of:
1. a set of events E, with each event having a start time (e;) and a finish time (ey),

2. a set of temporal ordering relations i), representing the order of events in the trace,

and

3. a set of shared-data dependencies 3), indicating which events can affect each other

because of shared variable accesses.
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Because many tracing facilities only record temporal ordering information for synchro-
nization events in trace files, N may have to be approximated with an incomplete temporal
ordering L’> The data dependency Ly s usually replaced with with an approximate set
of data dependencies D, because this information is generally not recorded and must be
approximated from Read and Write sets generated by static analysis. Because the methods
used to find both i) and ﬂ) produce under approximations of T, and 3), some useful
information is lost.

To determine if a race on events a and b is feasible, a prefix of program execution must
be found such that a is unordered with respect to b. This is done by constructing a temporal
ordering graph Gp from information in PP. It is then possible to validate some races with
Theorem 1.5 and Theorem 1.6 below.

Additional races may be validated by observing that not all data dependencies neces-
sarily cause events to be ordered. By estimating a set of dependencies describing event
interactions within the program called event-control dependencies Z, from L and ﬂ),
it is possible to construct a graph Gg from Gp which contains only data dependencies
which are not event-control dependencies. Gg can be used to validate more races with
Theorem 1.7.

Finally, it is possible to indicate that some races may be caused by other races. To do
this, it is necessary to define a race ordering relation i), where for a race between events

a and b (indicated by < a,b >):
<a,b>i><c,d><:>(aﬂﬂ)/\bﬂ)c)v(aid/\bid) (1.1)

Races can then be identified as artifacts using Theorem 1.8.
Theorem 1.5 An apparent data race < a,b > is feasible if a and b are unordered by Gp.

[NM91]

Theorem 1.6 In each tangle defined by Gp (each strongly connected component of Gp),

at least one of the tangled data races is feasible.
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[NM91]

Theorem 1.7 An apparent data race < a,b > is feasible if a and b are unordered by Gg,

and no successor of a or b in Gg can event-control a or b.
[NM91]

Theorem 1.8 If < a,b >71£>< c,d > then < c¢,d > could not have been an artifact of

<a,b>.

[NM91]

The work of Netzer and Miller is complementary to the work in this thesis. The purpose
of the work presented here is to describe an algorithm capable of providing a more accurate
temporal ordering graph for race detection. Netzer and Miller’s work is directed toward
reporting which subset of the races reported from such a graph could actually occur.

John Mellor-Crummey [MC92] has developed a system for combining compile time static
analysis with on-the-fly techniques to reduce the amount of state information necessary at
execution time to be used on Fortran programs. This is accomplished through a three stage
compilation process. Local analysis calculates and stores data on the interprocedural effects
for each procedure. Next, interprocedural propagation collects local summary information
from each procedure and uses a call graph to perform interprocedural analysis. Finally,
code for concurrency bookkeeping, access checks, and access history compilation is inserted
based on computed interprocedural solutions.

Results appear promising. In test runs on scientific code, use of interprocedural and
intraprocedural techniques resulted in an execution speedup of two to three times over on-
the-fly analysis code employing no static analysis of this type. It should be noted, however,
that the improved code still ran four to eight times slower than the code without the on-
the-fly race-detection.

This research is mentioned because it presents a possible solution to the some of the
problems of trace analysis. In this case, interprocedural analysis is used to improve run-

time performance of code using on-the-fly analysis by reducing the amount of required state
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information. Since trace-based analysis also needs state information, these methods may
help to reduce the size of the trace file to be stored, and to provide automatic detection of

the shared variables where races may be located.
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Chapter 2
A New Algorithm For Event
Ordering

The Initialize, Rewind, and Expand algorithms were proven to produce partial orders which
were true for all executions of the inferred programs taken from traces. Because of a limited
number of actual program traces to use for testing purposes, it was not known how frequently
the Expand algorithm produced an approximate partial order that did not contain all the
“always happens before” relationships that could be present for arbitrary programs.

In order to make this determination and refine the algorithm to reduce this frequency,
it was necessary to determine when it failed (It did not find a program and an execution
trace containing two events e; and ey such that e; happens before e; in every execution
of the program in which they both occur and our algorithm indicates that e; and es are
unordered).

A random program generator was constructed and the algorithm was applied to the
random programs it created (See Chapter 3 for implementation details). The algorithm’s
results were compared with the partial orders produced by an exponential time “brute force”
algorithm which appears practical only for the relatively small programs. This process
quickly identified traces where the algorithm failed to find some of the “always happens
before” orderings. These experimental results have lead to considerable modifications of
the original Expand part of the algorithm (the others being unchanged). This chapter will

present some new observations on which the changes that were based, the new Expand part
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of the algorithm, and a proof that the new Expand part safely adds to the partial order of

events.

2.1 New Observations

The study of random programs has motivated changes in the algorithm so that they exploit

the following additional observations:

Observation 2.1.1 If wait event e, on semaphore A is known to follow n waits on some
other semaphore B (given the safe partial order already computed) then e, must follow n

signal events on semaphore B.

This extends observation 1.2.1 to apply to semaphores other than the one used by the

event e,. The example that lead to this observation is shown in Figure 2.1.

Task A Task B Task C
Voo

W\\\wc

Dependencies found by brute force and algorithm

_ _— Dependencies found by brute force only

Figure 2.1: Example motivating observation 3.1. Event c is preceded by two wait on
semaphore 0 events (W’s) and therefore must be preceded by two Sp’s.

Observations 1.2.1 and 2.1.1 lead to what could be called first order inferences. A
particular event must be preceded by a certain number of wait events on various semaphores
and therefore the event in question must be preceded by as many signals as there are waits
preceding it. Shadowing (see the discussion of Observation 1.2.2) is a second order inference,

i.e. if signal e; happens before wait e,, then additional signals are also needed for the waits
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that precede e, (and have not already been accounted for because they also precede e,,). Our
next observation is a second-order extension of Observation 2.1.1, somewhat like shadowing

1s a second-order extension of Observation 1.2.1.

Observation 2.1.2 If some signal event es is going to help satisfy the signals needed for
wait event ey, then e, will also have to follow any signals needed by wait events that precede

€s.

This can be seen best by the example shown in Figure 2.2.

Task A Task B Task C Task D

_ _~ Dependencies found by brute force only

- Dependencies found by brute force and by algorithm

Figure 2.2: Example motivating observation 3.2. Events labeled e; and e,, correspond to
those in the observation. For e, to proceed, a signal on Semaphore 1 is required. If the
Signal to be used is the Signal in Task B, e,, follows es. Alternately, the Signal needed could
be in Task C. If the Signal in Task C and e, both occur, two Signal events on Semaphore
0 are required and e,, must still follow e;.

This chaining effect (the execution needs n signals but one of those signals needs m
more signals) can be repeated arbitrarily! and Figure 2.3 gives an example that takes this

chaining effect one step further.

Tt is believed this chaining may occur infrequently if at all in real programs.
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Task A Task B Task C

Dependencies found by brute force and algorithm

_ _~ Dependencies found by brute force only

Figure 2.3: Example requiring two applications of observation 3.2. Here, one Signal event
on Semaphore 1 is required if e,, in Task C is to proceed. The needed Signal is in either Task
A or Task B. If e; unblocks the Wait, then e,, follows e;. If the Signal in Task A activates
ew, then two Signal events on Semaphore 0 are needed (one each for e,, and the Wait event
in Task A). Therefore, the Signal event following e; is required and e, still follows e,,.
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2.2 An Explanation of the Recursive Algorithm

The Recursive Ezpand algorithm (Algorithm 2.1) cycles through the entire sequence of
events in the trace, using a routine called modify to advance the timestamps of Wait events
based on Observation 2.1.2. Since an arbitrary number of applications of Observation 2.1.2
may be required to determine the orders of some events, the goal was to capture this
chaining in a recursive algorithm that can be allowed to recurse as deep as time will allow.
The algorithm becomes polynomial (and conservative) when the recursion is limited to a
fixed bound.

The function modify considers the set of Signal events, R, and the set of Wait events,
W, that exist in relation to two timestamps: 7;, and 7,. The timestamp 7, is an amalga-
mated timestamp representing all the events previously considered through recursive calls
to modify. It will act as the event e, in the current application of Observation 2.1.2. The
timestamp 7, will function as the timestamp of the Signal e; from Observation 2.1.2. The
quantity depth indicates the number of times that Observation 2.1.2 is to be recursively
applied.

The function modify is used to build a set, T', of timestamps which are associated with
events in R, but do not represent the timestamps that the events have in every execution of
the inferred program of the trace. The modify function employs Observation 2.1.1, taking
the k' component-wise minimum of 7' (where & is the number of Wait events in W) to
determine the earliest time that 75 can be. It then returns the new timestamp in the
quantity 7.

Finally, the main loop takes the timestamp returned by modify for a specific Wait event,

and uses Max to combine it with 7(e?) and 7% (e).

2.3 Safety of the Expanded Partial Order

In order for the Recursive Expand algorithm to replace Algorithm 1.3, it must only add

ordering relationships to the partial order of events in the trace which are true for all
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Algorithm 2.1 (Recursive Expand):
Repeat the following procedure until no more changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
7(e) = modify(r(e), 7(e), e, depth);
set 7(e) = max(7(e), 7(eP), T(e));
else
set 7(e) = max(7(e), 7(eP));
end if;
end for;

Function modify(Tpases Tin, €, depth):
let 7., = 7(€)
if depth =0
return(7,,);
end if;
for each semaphore o,
let T' = (J;
let W (o) = {ew : €y is a Wait event on o, and
either 7(ey) < Ty or T(ey) < 7(€)};
let R(0) = {es : €5 is a Signal event on o,
T(es) 2 Tin and T(es) < Thase};
for each e; in R,
r = TEX(7in, 7(2));
T = {modi fy(Tpase, T, s, (depth — 1))} U T;
end for;
let k =|W(o) |;
let Ts = ﬁk(T);
let 7, = Max(Tim, 75);
end for;
return(ry,);

executions of the inferred program for the trace. More formally, this means that all partial

orders produced by Algorithm 2.1 must conform to the following definition:
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Definition 2.1 An assignment of timestamps to events, T, represents a safe partial order
if the following relation is true for all timestamps T assigned to events in a set of events in
the program, Set:

if T(e)[j] < 7(e)[j] and €' is executed by task j then ¢’ < e when e, e’ € Set.

Since Algorithm 2.1 was developed from Algorithm 1.3 as a part of the experiments which
produced Observations 2.1.1 and 2.1.2, the safety of the Recursive Expand Algorithm must
be proven.

The proof will begin with notation that will be used throughout the proof, then will
provide a series of Facts about the Recursive Expand Algorithm, and finally present one

Theorem and a series of Lemmas that constitute the proof itself.

2.3.1 Notational conventions

The following notation will be used in statements about the Expand Algorithm.

P is the parallel program under consideration, and uses counting semaphores as syn-

chronizing events.

e T is a previously assigned set of timestamps which represent a safe order of the events

in P.

e ¢, and es; are a Wait event and a Signal event in P on some semaphore S (not

necessarily the same one).
e 3} is the number of semaphores in P.
e ¢ is the number of an arbitrary semaphore, 0 < o < 3.
e Set is a set of events in P which always contains e,,.
e Sema(e) is the semaphore accessed by event e.

® eyqit and ey are an arbitrary Wait event and an arbitrary Signal event.
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e ¢,¢ are events of any type and any semaphore.
o 71 < 1y <= Vi(n[i] < 7o)
e T > Ty < VZ(Tl[Z] > Tg[i]) and 71 75 T9.

e 7#(e) is the timestamp containing the local event count for the event e in its 7

component and zeros elsewhere where e is in task .
e eP represents the event which immediately precedes event e on the same task.

e ¢ — ¢ indicates that e precedes €’ in the total order of the events in the execution of

P under discussion.

e ¢ < ¢ indicates that e precedes €’ in a causal, minimal partial order of events of every

execution of P where e and €' are present.

e an operation is declared to be ‘safe’ if it is used to update timestamps in a safe partial

order and is guaranteed to produce another partial order which also is safe.

2.3.2 Useful Facts

To better understand any claims made about the Recursive Expand Algorithm, it is useful
to concisely reiterate the following facts taken from the statement of Algorithm 2.1 2. The

following hold during any call to modify,
Tm = modify ((ew), Set, 7(es), depth),

where Set contains e,,.

Fact 2.3.1 W (o) is a set of Wait events on o generated during the call to modify.

W(o) = { ewait| (T(ewait) < Max(Set) or T(ewqit) < T(es), and Sema(eyqir) = o) }

2While these statements are equivalent with those made in the statement of the algorithm, some notation
has been changed to make the proofs that follow more readable
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Fact 2.3.2 R(o) is a set of Signal events on o generated during the call to modify.

esig|T(€sig) 2 Max(W (o)) and T(esig) 2 T(€w),

and Sema(esig) = 0

R(o) =

Fact 2.3.3

Fact 2.3.4 T(o) is a set of virtual timestamps based on the timestamps of events in R(c).

T(o) = m(e;)m(e,) = modify (7(ew), Set U{es}, 7(e),depth - 1), 21
er € R(o)

Fact 2.3.5 Within a call to modify, 7, is determined by two relationships.

foreach1l <o <%,

M, = Tming, (T(c)) (2.2)

Tm = mmax(7(es), Mi,..., M) (2.3)

Fact 2.3.6 Let ¢ be the task executing e.

By Equation 2.3, if 7% (e) < 7, = max(7(es), M1, ..., My):

T(es)[i]  if T(es)[i] > My[i], 1< o <s
T#(e)[i] < M, [i] if, for some o, My[i] > T(es)][] (2.4)
and My[i] = max(M,[i], ..., Ms[7])

The following hold whenever the timestamp 7(e) for event e is updated by the Expand

algorithm.

Fact 2.3.7 If event e is a Signal event, then:
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7(e) = max(7(e), 7(e”))

Fact 2.3.8 If event e is a Wait event, then:

7(e) = max(7(e), 7(e’), modify (7(e), (e), 7(e), depth))
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2.3.3 A Proof of Safety

Since the fundamental difference between Algorithm 1.3 and Algorithm 2.1 is in the recursive
function modify, this proof shows that the timestamps produced by repeated calls to modify

combine to create a safe result.

To make claims about the results of a modify call, it is necessary to examine the operations
within the function itself. The set W represents the set of Wait events which must precede
ey and e; in Observations 2.1.1 and 2.1.2 (represented in the Algorithm by 7, and 7(é)).

k" minimum of the set of modified timestamps,

Set W must be of the correct size because a
T, could miss an ordering relation if W is too small, or could add an incorrect relation if

W is too big.

Lemma 2.3 shows that W will always contain a sufficient number of Wait events to satisfy
the Observations 2.1.1 and 2.1.2 . Because Algorithm 2.1 enlarges timestamps to order
previously unordered events in safe partial orders, the algorithm is unsafe when 7(e’)[j] is
too large. Since the set W is generated by comparing event timestamps with the 7, =
max({7(eset) : €set € Set}), Lemma 2.2 supports Lemma 2.3 by showing that if an event e
that could be in W and 7(e) < 74, then e precedes an event in Set and should be included

in W.

The correctness of a call to modify also depends on the set R, because R represents the
group of Signal events k, of which precede e, and es; in Observation 2.1.2. Lemma 2.4
shows by contradiction that if a Signal event ey, happens before e,, or any Wait event in

W, then ey is in R, making R the correct set of Signals for e, and e;.

Lemma 2.2 Let 7 be a set of timestamps representing a safe partial order and let T4 be

the timestamp such that:

Tset = MAX({T(€set) : €set € Set})
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If 7(e) < Tset then there exists at least one eser € Set such that e < egey .

Proof: By contradiction.

Let 7(e) < Tget-

Assume e £ eget, for all ez € Set.

Assume without loss of generality that e is in task j.

Because e is in task j and e £ eses, then 7(e)[j] > 7T(eser)[7], for all eger € Set.
Since T(e)[j] > T(eser)[j] for all eset, then 7(e)[j] > Tset[4]-

But 7(e)[j] < 7Tset[j], for all j. Contradiction.

Therefore, there exists at least one eg; € Set such that e < egey.

a

Lemma 2.3 If Set is a set of events such that e, € Set, then for every execution of P
where e; — €y and €ger —> €y, for all eser in Set, the number of Wait events on o that

happen before ey, is at least the k, as computed during the call

Tm = modify (7(eyw), Set, 7(es), depth)

Proof: Let 75 = max({7(eset) : €set € Set}).

First, it must be shown that W (o) is a set of Wait events such that Veyq: € W (o), either

Ewait =< €s, Ewait = €, O there exists an egzer € Set such that eyeit < €set-

By Fact 2.3.1 if eyqit € W (0) and ey,q4¢ is an event in task 7, then either 7(eyqit)[¢] < 7(es)[],
or T(ewait)[?] < Tset[t]-

Case 1: T(ewait)[i] < T(ew)l[]

When 7(ewait)[1] < T(ew)[i], wait < €w-

Case 2: T(ewait)[1] < 7(es)[7]
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When 7(ewqit)[i] < 7(es)[E], ewait < €s-
Case 3: T(ewait)[i] < Tset[i]
When 7 (ewait) [1] < Tset[t], at least one ez € Set exists such that eyqi < eser by Lemma 2.2.

Therefore, because e; — ey, and €set — €y, Veser € Set, then all the Wait events in W (o)

happen before e,,.
ko is the number of Wait events on o in W (o) (Fact 2.3.3).
At least k, Wait events on o happen before e,,.

a

Lemma 2.4 Consider a Wait event, e, a Signal event, es, a set of events, Set, and a call

to modify:

Tm = modify (7(ey), Set, 7(es), depth)

Let W (o) be the set of Wait events for some semaphore o generated in the call to modify and
let eyqit be an arbitrary Wait event in W (o). Let egq be a Signal event in P on semaphore

ag.

If there is any execution E of P where esig — €yait and esig — €y, then egy € R(0).

Proof: By contradiction.

Assume eg5g — €yqit and €59 — €, in execution E of P and egq & R(0).
Since eg9 € R(0), either 7(egiq) > T(ey) or T(esig) > mMax(W(o)).

Case 1: 7(esig) > T(ew)

Let 7 be the task executing e,,.

Since 7(egig)[7] > 7(ew)[i], 50 ey < egig which contradicts the assumption that egq — €, in

E.
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Case 2: 7(esiy) > max(W (o))
Let 7 be the task executing e,,.
Since 7(esig)[i] < Max(W (o0))[i] and 7(ewait) € T, we have T(esig)[i] < T(ewait)[7]-

Since 7T(egig)[i] > T(ewait)[4], we have T(ewait)[j] < T(€sig), which contradicts the assumption

that €5y — €wqit in E.

In both cases, we get a contradiction, so only the signals on o in R(c) can happen before

bothe,, and an ey € W (o) in executions of P.

a

The proof of safety of the Recursive Expand algorithm is a case by case examination of the
recursion tree of modify. The first case that the proof will examine is the leaves the tree
where depth = 0. Because modify returns the unchanged timestamp of a Signal event and

that timestamp already belongs to a safe partial order, modify is safe.

Lemma 2.5 Let 7, = modify (7(ey), Set, 7(es),0) where Set is an arbitrary set of events

in P.

If 7#(e) < Ty then e — ey, for every execution of P where e; — ey,.

Proof: When 7, = modify (7(ey), —, 7(€s),0), Ty = T(e5)-
Because 77 (e) < 7, = 7(es), € < e€s.

Since e < ez then e — e, in every execution of P where e; — e,,.
O

To understand how a Lemma will be proved for all interior nodes of the recursion tree, it is
useful to examine the simplest meaningful case where modify can be called: depth = 1 and
Set is composed of a single Wait event, e,,. Under these conditions, two possible cases occur
when the event e, is examined: the i"® element of the timestamp of the event preceding e,

will either be less than the i** element of the timestamp of e, or, less than the i** element
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of the k" minimum of the set of modified timestamps, M. If the former case is true, the
result is safe because 7(es) is safe. In the latter case, it can be shown that at least one
Signal event in R whose timestamp has an i element larger than the i** element of M,.
Since this is true, Lemma 2.5 can be used to show that the modified timestamp associated

with that Signal event is safe.

Lemma 2.6 Let 7, = modify (7(ew), {€w}, 7(€s),1).

If ’7'#(6) < T then e — ey, for every execution of P where es — ey,.

Proof: Let E be an arbitrary execution of P where e; — e, and e be an event in Task ¢

where 77 (e) < 7.

Since 7% (e)[i] < T, [i], Fact 2.3.6 states:

either 77 (e)[i] < 7(es)[i] or 7% (e)[i] < M,[i] for some 1 < o < s

Case 1: 7#(e)[i] < 7(es)[i]-

When 7% (e)[i] < 7(es)[i], e < es.

Since e < e; and e; — €, then e — e,.
Case 2: 7% (e)[i] < M,]i].

th components strictly less than M,[i].

At most k, — 1 timestamps in T'(c) have 4
By Lemma 2.4, R(o) contains all Signal events e, € R(o) such that e, — e, in E.

Since k, Wait events are known to happen before e,, in E, at least k, Signal events from

R(0) must also occur for e, to happen.
Therefore, at least one e, € R(o) exists for which e, — e, in E and M, [i] < m(e,)[7].

Because 7(e) < m(e;) = modify (1(ey), Set U{es}, 7(er),0) and e, — e, in E, we can apply

Lemma 2.5 to show that e — e, in E.
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Since FE was chosen arbitrarily, e — e,, in every execution where e5; — €,,.
O

A more general case of the interior node where depth = 1 is complicated by Set containing
ey and an arbitrary number of Signal events. The number of Wait events in W must be
the number that must occur given that all the Signal events in Set precede e;. Lemma 2.3
is used to show that W and k, are correct when this occurs. Otherwise, the structure of

the proof of the Lemma, for the general case is similar to the case where Set is limited.

Lemma 2.7 Let Set be an arbitrary set of events containing e, and

Tm = modify (7(ey), Set, T(es), 1).

If 7#(e) < Tpm, then e — ey, for every execution of P where e — ey and €sep — €y, Veger €

Set.

Proof: Let F be an arbitrary execution of P where e; — e, and eger —> €y, Veser € Set.

Let e be an event in Task 1.

When 7#(e)[i] < Tm[i], Fact 2.3.6 shows:

either 77 (e)[i] < 7(es)[i] or 7 (e)[i] < M,]i] for some 1 < 0 < s

Case 1: 7#(e)[i] < 7(es)]i]-

When 7#(e)[i] < 7(es)]i], e < es.

Since e < e; and e; — ey, € = €.

Case 2 77#(e)[i] < M, i].

By Lemma 2.3, at least k, Wait events on o happen before e,, in execution E.

th

At most k, — 1 timestamps in T'(o) have 7" components strictly less than M, [i].

By Lemma 2.4, R(o) contains all Signal events e, on semaphore ¢ such that e, — e, in E.
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Since k, Wait events are known to happen before e,, in E, at least k, Signal events from

R(0) must also occur before e, in E.
Therefore, at least one e, € R(o) exists for which e, — e,, in E and M,[i] < m(e,)[i].

Because 7(e)[i] < m(e;)[i] = modify (T(ew), Set U{es}, 7(e;),0) and because e, — e, and

es — ey in E, we can apply Lemma 2.5 to show that e — e, in F.

Since £ was chosen arbitrarily, e — e,, in every execution where e; — e, and eger — €y,

for all ez € Set.

a

The proof of the case for an arbitrary recursion depth is an inductive proof on the depth.
Lemmas 2.7 and 2.5 form the base cases for depth = 1 and depth = 0 respectively. As
with the case in Lemma, 2.7, the proof of the case of arbitrary depth j employs two cases.
In the first case, the i component of the timestamp 7# for an event e in Task i is less than
the predecessor of the event under examination e,,. The result is safe because the modified
timestamp of e,, is the first to be incorrect. In the second case, 7% (e)[i] is less than the
k" minimum of a set T' of timestamps produced by calls to modify based on timestamps of
Signal events in R. Lemmas 2.3 and 2.4 show that k and R are both constructed to yield

a safe result. T' is composed of safe timestamps by the inductive hypothesis. Therefore, the

resulting timestamp 7, is safe.

Lemma 2.8 Let 1, = modify (7(ey), Set, 7(es), depth).

If 7% (e) < Tim, then e — ey, for every execution of P where e — ey and €sep — €y, Veger €

Set.

Proof:
We prove this Lemma by induction on the recursion depth, depth.

We use as a base case, depth = 1. Lemma, 2.7 shows that Lemma 2.8 holds when depth = 1.

Lemma 2.5 shows that Lemma 2.8 holds when depth = 0.
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We now consider the case for an arbitrary depth = j, where j > 1; and assume that

Lemma 2.8 holds for all values of depth between 0 and j — 1.

Let E be an arbitrary execution of P where e; — e, and eget — €y, Veger € Set. Let e be

an event in Task i where 7#(e) < 7,,. We now show that e — e,, in E.

Since 7% (e)[i] < Ty [i], Fact 2.3.6 states:

either 77 (e)[i] < 7(es)[i] or 7 (e)[i] < M,]i] for some 0,1 < o < s

Case 1: 7#(e)[i] < 7(e,)]i]-

When 7#(e)[i] < 7(es)]i], e < es.

Since e < e; and e; — €y, € = €.

Case 2: 7#(e)[i] < Myi].

By Lemma 2.3, at least k, Wait events on o happen before e,, in execution E.

th components strictly less than M,[i].

At most k, — 1 timestamps in T'(c) have i
By Lemma 2.4, R(o) contains all Signal events e, on semaphore ¢ such that e, — e, in E.

Since k, Wait events are known to happen before e,, in E, at least k, Signal events from

R(o) must also occur before e,, happens.
Therefore, at least one e, € R(o) exists for which e, — e, in E and M,[i] < m(e,)[i].

Because 7(e)[i]] < m(e,)[i] = modify (7(ew), Set U{es}, 7(er),0) and e, — ey, €5 — e,
and eger —> €y, Veger € Set in E, we can apply the inductive hypothesis and conclude that

e —> ey in E.

Since F was chosen as an arbitrary execution where e; — e, and egep — €y, Veger € Set, we

conclude e — e, in every execution where these conditions are met.

a
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Since Lemma, 2.8 proves safety for an arbitrary interior node on the recursion tree where
a Signal event e, is examined, and the first call made to modify is uses only the Wait event

ew, these first calls must be proved safe.

Lemma 2.9 Let 7, = modify (T(ew), {€w}, T(ew), ).

If 7% (e) < T, then e < ey.

Proof: Let F be an arbitrary execution of P.

Given R(o) from Fact 2.3.2:

m(e,)|m(e, = modify (1T(ey),{ew},7(er),7 — 1),
(o) = (er)Im(er) fy ((ew), {ew}, 7(er), 5 — 1) (2.5)
er € R(o)
M, = ming, (T(0)),1<0<s (2.6)
Tm = max(7(ey), M1, ..., M) (2.7)

Let i be the task executing e in E. By Equation 2.7, if 7#(e) < 7p:

T(ew)li] if T(ew)li] 2 Mo[i], 1< 0 <s
()il < M,[i]  if, for some o, M,[i] > (ew)][i] (2.8)
and M,[i] = max(M [i], ..., My[i])
Case 1: Assume 77 (e)[] < 7(ey)[i]-
When 7#(e)[i] < T(ew)[i], € < €w.
Case 2: Assume 77 (e)[i] < M,[d].

h

At most k, — 1 timestamps in T'(c) have i*" components strictly less than M,][i].

By Fact 2.3.1, eyqit € W(0) iff eyqit < €y because Set = {e,} and 7 is safe.
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By Fact 2.3.3, at least k, Wait events happen before e,,.
By Lemma 2.4, R(c) contains all Signal events e, on semaphore o such that e, — ¢, in E.

Since k, Wait events are known to happen before e, in E, at least one e, € R(0) exists

for which e, — ey, in E' and M,[i] < m(e,)[7].

Because m(e,;) = modify (17(ey),{ew}, 7(er),7 — 1):

if e, — e, and 77 (e) < m(e;), then e — e, (2.9)

by Lemma 2.8.
Since FE was chosen arbitrarily, e — e,, in every execution, and e < ey,.
O

Finally, a theorem states that the timestamps produced by the Recursive Expand algorithm
are safe. It shows that by Lemma 2.9 that in an analysis of a trace of an arbitrary execution
of a program P there is no first timestamp which is made unsafe by application of the

Algorithm. Therefore the events in the generated partial order all are safe.

Theorem 2.10 The timestamps produced by the Expand Algorithm are safe.

Proof: Assume that the contrary is true: that the timestamp updates produced by the

Expand Algorithm are not safe.
Let the timestamps initially assigned to the events in P be safe.

If the Expand Algorithm produces unsafe timestamps, then there must be a first update
that changes the safe timestamp 7(e) to an unsafe timestamp 7(e). At the start of this

update, the timestamps assigned to all events are safe.

Case 1: e is a Signal event

7(e) = max(7(e), 7(e"))
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by Fact 2.3.7.
Let ¢’ be any event such that 77 (e) < 7(e).

Thus either 77 (e’) < 7(e) and €’ < e (since 7(e) is safe) or 7#(e/) < 7(eP) and €' < € < e,

contradicting our original assumption that 7(e) is unsafe.

Since 7(e) is safe e, 7(e) can only become unsafe if it inherits an unsafe timestamp from e”.

Because 7(e) is the first unsafe timestamp, 7(e) must be safe if e is a Signal event.

Case 2: e is a Wait event

7(e) = max(r(e), 7(e"), 7m)

where

Tm = modify (1(e), {ew}, 7(€), depth)

by Fact 2.3.8.
Let €' be any event such that 77 (e') < 7(e), and €' is in Task i.
Either 77 (e') < 7(e), 77 (e') < 7(eP), or 77 (') < Ty

If 7#(e') < 7(e) or 7#(e') < 7(eP), 7(e) inherits safe components from 7(e) or 7(eP) by the

argument in case 1.
We conclude that 77 (¢/) < 7,, and by Lemma 2.9, ¢ < e.
Thus €’ < e for any e’ where 7#(e) < 7(e), contradicting our assumption that e’ £ e..

Since 7(e) is the only timestamp changed during the update, the timestamps produced by

the update are safe, contradicting the assumption.
Therefore, the timestamps produced by the Expand Algorithm are safe.

a
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Chapter 3
An Implementation

A test of the changes made to Algorithm 1.3 to create Algorithm 2.1 is to use both algorithms
on many real programs and compare the results. Unfortunately, too few programs are
currently available with recorded trace information to prove that the Recursive Expand

Algorithm orders more events in partial orders used in trace-based analysis with certainty.

To overcome this difficulty, a testing application called tracerC has been written using the
C++ programming language. This program does not use actual program traces, but, it
generates random sequences of events using a counting semaphore model and then analyzes
these event sequences as if they are real traces. The results of algorithmic analysis are
compared against timestamps assigned to events by a brute force trace analyzer that exactly

determines the “always happens before” relationship.

3.1 tracerC - A C++4 Test Implementation

The tracerC program uses a simplified representation of program traces consisting of an
ordered list of Wait and Signal events. Each event is composed of a randomly assigned
semaphore, a Task Id (to indicate which task performed each event) and a type (Signal or
Wait). As events are entered in the trace only when the associated operation completes,
every prefix of the trace contains at least as many signal events on each semaphore as wait

events.
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The “program” corresponding to this trace format can be viewed as in Figures 1.1, 2.1, 2.2,
and 2.3. The events are grouped in vertical lists by task. Within each vertical list, the
events appear in the same order as they occurred in the trace. A “state” of the program
corresponds to selecting a (possibly empty) prefix of each vertical list. Usually some program
states are unreachable by any execution. For example, in Figure 2.3 the state where Tasks
A and B have executed no events but Task C has executed its first event (W7) is unreachable

as the wait cannot complete until after semaphore 1 has been signaled.

Once an event sequence has been generated, a brute force analyzer performs a depth-first
search on the program’s (exponentially large) state space to discover all of the reachable
states. If event e; has been executed in every reachable state where event es has been exe-
cuted then the brute force analyzer indicates that e; “must happen before” es. Performing
this test for each pair of events allows the brute force analyzer to compute the “always

happens before” relationship for the “program?”.

After brute force analysis is complete, the Rewind Algorithm is run on a copy of the un-
ordered test sequence. With the events in the sequence in a safe partial order, Algorithm 1.3
is run on the trace representation of the “program” and the results compared to the partial
order generated by the brute force analyzer. If the two orders are not identical, Algo-
rithm 2.1 is run on the sequence beginning with depth = 1. If a comparison between the
partial order produced by the Recursive Expand algorithm and the order found by brute
force shows the two still not to be identical, the value of depth is increased and the trace is
analyzed again. This process is repeated until the two partial orders match, or a specified
maximum depth is reached. If the Recursive Expand algorithm is unable to find the partial
order at maximum depth that the brute force analyzer finds, the trace and the partial order

is written to a file for later analysis by hand.

The tracerC application keeps track of the CPU time consumed during each call of the brute
force analyzer, the Expand algorithm, and the Recursive Expand algorithm and records this

information in a file.
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If a real program makes conditional branches that could be affected by races, then the the
brute force analyzer may overestimate the “must happen before” relationship. However,
even the overestimated “must happen before” relationship allows the race affecting the
conditional branch to be flagged. The experiments presented here concentrate on how often
the “always happens before” relationship computed by the other algorithms matches that
returned by the brute force analyzer and how often the Recursive Expand algorithm locates

event orders that the Original Expand algorithm misses.

3.2 Event Generating Schemes

At this time, tracerC generates random events by a single method which can be used to
automatically generate and analyze traces for a specified amount of time. The generation
scheme uses the parameters MaxTasks, MaxSemaphores, and NumEvents. To generate a
trace, tracerC randomly selects NumTasks (between 2 and MaxTasks) and NumSemaphores
(between 1 and MaxSemaphores) using a uniform random distribution. Once these values

have been set, tracerC executes a loop to create the trace of a non-blocking execution.

The generator loop is presented in Figure 3.1. This method uses random numbers to
generate the Task id and semaphore, and a 50/50 chance of an event being a Wait or a
Signal, when the partially constructed trace contains more Signals than Waits. Otherwise

a Signal event is generated.

3.3 Frequency Data

To increase the value of the results of tracerC, it is useful to know how often tracerC
is actually examining different traces. The tracerC program attempts to determine the
quantify the number of traces that are generated randomly by maintaining a database

using Postgres. The following information about a random trace is used as a key:
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while less than NumEvents generated do
select T randomly between 1 and NumTasks
select sem randomly between 1 and NumSemaphores
if more signals than waits have been generated for sem
then
flip a coin
if heads then output: Wy, by task T
if tails then output: Ssepm by task T
else
output: Sgep, by task T
end while

Figure 3.1: Coin Toss program generator.

The number of Tasks.

The number of Semaphores.

An array of the number of Signal events per Task.

An array of the number of Wait events per Task.

An array of the number of Signal events per Semaphore.

An array of the number of Wait events per Semaphore.

To exactly determine the number of traces that the generator produces would require the
development of a canonical form for describing all traces. The determination of whether a
given trace matches a canonical form is complex because of Task Id and Semaphore number
re-labeling. For the purposes of this work, it was decided that an approximate approach be

used because of programming simplicity.

Use of the Postgres trace archive has shown that out of approximately 1500 traces in the
database, only two were found to be similar under the system used to describe traces in

the previous chapter. Since the attributes used to describe these traces are necessary but



39

not sufficient to show the different between traces, these traces may not be structurally

identical.
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Chapter 4
Results

A series of tests have been performed to determine the effectiveness of Algorithm 2.1. In all
cases, reported times are CPU time inside and outside the Operating System kernel. Since
such times include time for memory page faults, the time data tracerC produces is affected
by the load of the machine on which the application is being run. It is assumed that this
interference is significant but small and that figures are within five percent of what they

would be on a machine with little user load.

The most significant result of the experiments is that the Recursive Expand Algorithm is
a significant improvement over the original Expand Algorithm. Figure 4.1 shows that the
percentage of traces where algorithmic and brute force analysis produce identical traces is
significantly higher than the percentage produced by the original Expand algorithm when
Algorithm 2.1 is used with the recursion depth set to its lowest level. Figure 4.2 shows that
the Recursive Expand algorithm shows a similar improvement in the number of timestamps
that are found incorrect when the produced partial orders are compared. Since this per-
centage is strongly correlated with the number of correct traces, it is difficult to determine
if the partial orders that are incorrect contain more ordered pairs of events as recursion

depth increases.

It should also be noted that it is assumed that real programs will exhibit more regular

ordering properties than the inferred programs of the randomly generated traces used here.
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It is hoped that the percentages of correct traces of real programs will be higher than those

for random programs.
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Figure 4.1: Percentage of traces the are correctly analyzed by Expand and Recursive Expand
at depth = 1, depth = 2, and depth = 3.

Unfortunately, the more complex analysis that the improved algorithm uses takes more time
to execute. Figures 4.3 and 4.4 show the mean execution times of the Recursive Algorithm
compared to brute force analysis and the original Expand algorithm. The results show
that the Recursive Algorithm provides analysis which is less time intensive than brute force
analysis when recursion depth is low but that inefficiency in the current implementation
makes the Recursive analysis unattractive at higher depth because of execution time. The
large confidence intervals around the mean times seem to be the result of a significant
number of executions with long running times in the tail of the frequency distributions of

execution times with all analysis tools. (See Figures 4.5 to 4.8.)

The range of execution times seems to be related to the number of different possible execu-
tions that the inferred program can exhibit. For brute force analysis this means an increased

number of concurrency states that the program must examine. For Recursive Expand this
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Figure 4.2: Percentage of timestamps that are correctly determined in partial orders pro-
duced by Expand and Recursive Expand at depth = 1, depth = 2, and depth = 3.

is related to the number of Signal events compared to any Wait event which increases the
size of the recursion tree in Recursive Expand. Examination of the raw data reveals that
these two factors do not necessarily correlate and a significant number of cases exist where
algorithmic methods at high depth ran faster than brute force as well as where brute ran

faster than Recursive Expand.

The use of small traces to collect this execution time data may lead to an incorrect inference
concerning relative execution times. It is believed that for real traces of thousands of events,
brute will be impractical whereas Recursive Expand at depth = 1 or depth = 2 will be

practical.

Testing on traces of large size was not attempted because the brute force analyzer takes
up large amounts of memory when it hashes every concurrency state it finds. This number
of states is so significant that the number of states hashed by the brute force analyzer for

traces of 90 events filled up the 128 megabyte swap space of a Sparcstation 2 before the
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execution was killed. This attempted analysis was ended before any meaningful data could

be saved in an output file.

The total number of traces of various sizes produced across several runs of tracerC are

shown in Table 4.1.
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Figure 4.3: Mean running times for brute, Expand, and Recursive Expand at depth = 1
and depth = 2 with confidence intervals at 95%
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Figure 4.4: Mean running times for brute and Recursive Expand at depth = 2 and depth
= 3 with confidence intervals at 95%
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Figure 4.5: Frequency histogram of execution times for brute on traces of 40 events
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Figure 4.6: Frequency histogram of execution times for Recursive Expand at depth = 1 on
traces of 40 events
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Figure 4.7: Frequency histogram of execution times for Recursive Expand at depth = 2 on
traces of 40 events
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Figure 4.8: Frequency histogram of execution times for Recursive Expand at depth = 3 on
traces of 40 events



# of events # of traces
35 545
40 426
45 397
50 157

Table 4.1: Total numbers of traces for each number of events.
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Figure 4.9: A trace where Recursive Expand fails. At least one of the Signal events in Task
B is required: the Signal event e is needed if e, is executed and Task A blocks and the
Signal event following e is needed if Task A completes and Task C blocks

An interesting test trace was discovered that breaks the Recursive Expand Algorithm. The
first trace (See Figure 4.9) displays a complex locking behavior that Recursive Expand is
unable to detect. In order for the events e; and e,, to both occur, two Signals on semaphore
zero and two Signals on semaphore one are required. T'wo of the four Signal events in Tasks
A and C follow a symmetric pattern of Wait events, execution can reach either es; or e,
and cause the other of the two Tasks to block. Therefore at least one of the Signal events
in Task B is required: the Signal event e is needed if e,, is executed and Task A blocks and

the Signal event following e is needed if Task A completes and Task C blocks.
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A bug in the implementation of the algorithm was discovered after most of these test runs
were made. It was found that when k is larger than the size of R, the ming function returned
the max of the R, rather than a timestamp set to infinity to indicate that event could not

occur.

After this bug was corrected, the nine traces of forty events that produced errors at depth =
3, were rerun using corrected code. None of the results differed with partial orders produced

by the code with the bug.
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Chapter 5
Summary

5.1 Conclusion

Parallel programs with explicit synchronization can be notoriously difficult to debug. One
important kind of correctness and performance debugging tool determines and presents the
temporal ordering relationships between various synchronization operations in the program.
Writing such a tool which is accurate, practical, and efficient is difficult because event
ordering analysis frequently addresses questions which are at least NP-hard for arbitrary
programs. These problems can be avoided by basing analysis on program traces rather
than the program itself, and by further confining analysis to the search for a conservative
approximation of the ordering relationships that may exist between events which can be

found in polynomial time.

Helmbold, McDowell and Wang presented a series of three algorithms for extracting useful
ordering information from sequential traces. The type of output that these algorithms
sought to produce is a partial ordering of events reflecting the “always happens before”
relationship. An event “always happens before” another event if the event precedes the
second event in all executions of the program that are consistent with the trace in numbers
and types of events. These algorithms used semaphore style synchronizing constructs with
vector timestamps very similar to those found in [Fid88]. The first algorithm was for

initialization, and was similar to the one presented by Fidge [Fid88] and Mattern [Mat88].
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It read a trace and provided each event with a timestamp based on the order of events
in the trace. This order of events is not general enough because it describes the single
execution found in the trace. The Rewind Algorithm took the partial order produced by
the initialization algorithm and decoupled Wait events from specific Signal events. The
partial order generated by the Rewind Algorithm is too general because the Rewinding
process deletes some ordering relationships between events that may actually occur in all
executions of the program consistent with the trace. The last algorithm, called Expand,

attempted to recover some of these relationships.

This work describes a new algorithm called Recursive Expand which was developed while
implementing and testing the Expand algorithm. By analyzing the situations where the Ex-
pand algorithm failed, it was possible to state several new observations about how synchro-
nization events are ordered and these observations were used to create the new algorithm.
The Recursive Expand algorithm was presented with the observations that motivated its
creation and a proof that the new algorithm produces only partial orders which are safe
(can be used to debug all program executions consistent with the trace) from partial orders
which are already safe. Lastly, this work provides a synopsis of experimental data that
showed the Recursive Expand algorithm capable of finding many more event orders than

the old Expand algorithm.

If parallel programming is to become much simpler and less prone to errors due to poor
synchronization, either a more comprehensible programming paradigm must be invented
or advanced software tools must be written. Since efforts over the last decade to find an
efficient approach to programming in multithreaded environments have not fully escaped
synchronization problems, better debugging software would seem to be a worthwhile pursuit.

The material presented here is a step in that direction.
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5.2 Future Work

With an implementation of the Recursive Expand Algorithm completed and tested, there
are several open issues that can be explored and some problems that must be addressed.

These include:

1. Efficiency. At the present time, the Recursive Expand is very time expensive. To
make a more practical tool, it would be worth the effort to attempt to reduce this
execution time. Since it recurses on the sets of events that it finds in any particular
call without regard for calls either before or after, it may actually duplicate effort.
This problem could be solved by introducing some sort of state id mechanism for a
particular call to modify and use this to guarantee that only unique states are actually

executed.

2. An Analysis Tool. Time must be spent incorporating the Recursive Expand algorithm
into a tool capable of reading and analyzing real traces. Such a tool called browser
currently uses the Initialize, Rewind, and (original) Expand algorithms to locate races
in programs in IBM Parallel Fortran. The tool could be modified both to accept a

broader range of languages and incorporate the new Recursive Expand algorithm.

3. New Experiments. Since only one type of randomly generated trace was used as input
for the data presented here, other generation schemes could be used and their effects
on the success rate and execution time of the Recursive Expand algorithm determined.
Such a new generation scheme might be similar to the first, except that the probability
of generating a Wait event increases as the ratio of Signals to Waits increases. Other
schemes might model more complex synchronization structures using Signal and Wait
events, like a simple, properly nested message passing system where random numbers

indicate the Tasks sending and receiving the message.

4. Depth Heuristics. It may be possible to find a few heuristics capable of determining

the maximum necessary recursion depth for a specific program, or a good minimum
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recursion depth to be used for a first pass with a tool using Recursive Expand. Since
this could cut down on time spent running the tool, and possibly reduce the number

of spurious races reported to the programmer, this would be very useful.
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