Analyzing Traces of Parallel Programs Containing
Semaphore Synchronization

D. P. Helmbold, C. E. McDowell, T. Haining
September 28, 2003

Abstract

One important kind of correctness and performance debugging tool for parallel
programs determines and presents temporal ordering relationships between the vari-
ous synchronization operations in the program. The particular ordering relationship
we study is the “always happens before” relationship for arbitrary programs using
semaphore synchronization. Our analysis is based on an execution trace of the pro-
gram rather than the program itself. We have previously published a polynomial time
conservative approximation of the “always happens before” relationship. Determining
the exact “always happens before” relationship is intractable (co-NP Hard).

We built a random program generator and applied our algorithm to the random
programs it generated. Our algorithm’s results were compared with the partial orders
produced by an exponential time brute force algorithm which appears practical only
for the relatively small programs generated. This process quickly identified traces
where our algorithm failed to find some of the “always happens before” orderings. The
findings from these experiments and the resulting modifications to our algorithm are
described in this paper.

1 Introduction

Parallel programs with explicit synchronization can be notoriously difficult to debug. One
important kind of correctness and performance debugging tool determines and presents the
temporal ordering relationships between the various synchronization operations in the pro-
gram. The particular ordering relationship we study is the “always happens before” rela-
tionship. Informally, event e; “always happens before” event ey if e; happens before ey in
every execution in which ey occurs.

The complexity of determining the ordering relationships varies depending upon the type
of synchronization and the branching characteristics of the program. There are polynomial
time algorithms for simple models such as message passing with two-way naming or post
and wait events with no clear in straight line programs (with no branches except bounded
loops) [NG92]. On the other hand, undecidability issues arise when arbitrary programs are
considered. We have been studying this problem for arbitrary programs using semaphore
synchronization. We avoid the undecidability problems by basing our analysis on a trace

of the program rather than the program itself. Even with this restriction the problem is
intractable (co-NP Hard), so we settle for a polynomial time conservative approximation of
the “always happens before” relationship.

One possible application of the “always happens before” relationship is the detection of
data races. If all accesses to a shared variable are ordered by the “always happens before”
relationship then there is no race on the variable. Our conservative approximation of the
“always happens before” relationship leads to the detection of more races than can occur,
but guarantees the detection of every race that did occur in the execution of the program
that was analyzed.

Care must be taken when generalizing from a trace to the entire program. One important
situation where our trace results can be generalized is when we detect that there are no data
races in the trace. This means that there are also no data races in the program (when
executed with the same input).

In [HMWar| we described our basic approach. That algorithm takes an execution trace
and produces a partial order representing the temporal orderings that always hold for the
given program on the given input with two limitations:

1. It may fail to indicate that two events are ordered when they must always occur in a
particular order (i.e. it is a conservative under-approximation of the “always happens
before” relationship).

2. It may indicate that event e; “always happens before” event e; when there is a radi-
cally different execution where e, happens before e;. When this happens the radical
difference between the executions is caused (directly or indirectly) by some other race
in the program that will be detected by our algorithms. (L.e. if we report there are no
races then there are none, but we may not report all of the races.)

Other researchers are pursuing this problem from the other end (e.g. [NM91]). Given
a set of potential races (as might be reported by our analysis) their techniques identify a
subset of the races that that can actually occur. We believe these to be complementary
approaches and are continuing to refine our algorithms to reduce the above limitations.

In order to refine our algorithm it was necessary to determine when it failed (i.e. find a
program and an execution trace containing two events e; and ey such that e; happens before
ez in every execution of the program in which they both occur and our algorithm indicates
that e; and ey are unordered). Given the limited set of “real” programs available to us in the
programming language we currently support (IBM Parallel Fortran) our algorithm never fails
(i.e. it finds exactly those orderings that hold for all executions given a particular input). We
therefore built a random program generator and used our algorithm on the random programs
it generated. Our algorithm’s results were compared with the partial orders produced by
an exponential time “brute force” algorithm which appears practical only for the relatively
small programs generated. This process quickly identified traces where our algorithm failed
to find some of the “always happens before” orderings. These experimental results have lead
to considerable modifications to our algorithms.

2 Overview of the Algorithm

Our algorithms use vector timestamps [Fid88] for each event to represent the partial order.
We call a partial order safe if it contains a proper subset of the edges in the “always happens
before” ordering. We first compute a very conservative safe partial order from an execution
trace and then attempt to insert new edges into this safe partial order while maintaining the
safeness property. Edges are inserted into the partial order by manipulating the timestamps
assigned to the events.

We only consider synchronization using counting semaphores with the two semaphore
operations signal and wait'. To compute the initial safe partial order we assume that any
signal event could have been the signal that releases any wait. Our previous algorithm for
inserting additional edges was based upon the following observations:

Observation 1 If some wait event e, on semaphore A is known to follow n other waits
on semaphore A (given the safe partial order already computed) then we know that e, must
follow n + 1 signal events on semaphore A. Thus additional edges can be inserted into the
partial order by increasing the (vector) timestamp for e, so that each component is at least
as big as the corresponding components in n + 1 of the timestamps for the signal events on
semaphore A.

Observation 2 If one of the n + 1 signals, call it e;, needed in observation 1 is known to
be preceded by an additional wait event on semaphore A that is not one of the n wait events
known to precede event e,,, then n + 2 signals occur before e,, whenever e; occurs before e,,.

This second observation implies that n + 1 signals other than e, occur before e,,. In the
program of Figure 1, the S; event in task D corresponds to the ey event in Observation 2.
We call this phenomenon shadowing, as the “shadow” cast by the preceding wait prevents
es from satisfying the signals needed by e,,.

Task A Task B Task C Task D

S

- - - -

@

—= Arcs implied by Observation 1
- = Arcs implied by Observation 2

Figure 1: An Example of Observations 1 and 2. Note that the program can deadlock with
Task D waiting on semaphore 1.

!These are more descriptive for English speakers than the original V and P of Dikjstra.

Our study of random programs has motivated changes in the algorithms so that they
exploit the following additional observations:

Observation 3 If wait event e,, on semaphore A is known to follow n waits on some other
semaphore B (given the safe partial order already computed) then we know that e, must
follow n signal events on semaphore B.

This extends observation 1 to apply to semaphores other than the one specified in the
event e,. The example that lead to this observation is shown in Figure 2.

Task A Task B Task C
Voo

W\\\Mc

__— Dependencies found by brute force and algorithm

_ ~ Dependencies found by brute force only

Figure 2: Example motivating observation 3. Event c is preceded by two wait on semaphore
0 events (Wy’s) and therefore must be preceded by two Sy’s.

Observations 1 and 3 lead to what could be called first order inferences. A particular event
must be preceded by a certain number of wait events on various semaphores and therefore
the event in question must be preceded by as many signals as there are waits preceding it.
Shadowing is a second order inference, i.e. if signal e; happens before wait e,, then we also
need additional signals for the waits that precede e (and have not already been accounted
for because they also precede e,). Our next observation is a second-order extension of
Observation 3, somewhat like shadowing is a second-order extension of Observation 1.

Observation 4 If some signal event es is going to help satisfy the signals needed for wait
event e, then e, will also have to follow any signals needed by wait events that precede ey.

This can be seen best by the example shown in Figure 3.

This chaining effect (the execution needs n signals but one of those signals needs m more
signals) can be repeated arbitrarily? and Figure 4 gives an example that takes this chaining
effect one step further. Our goal was to capture this chaining in a recursive algorithm that
can be allowed to recurse as deep as time will allow. The algorithm becomes polynomial
(and conservative) when the recursion is limited to a fixed bound. The complete algorithm
is given in the appendix.

2We believe this chaining may occur infrequently if at all in real programs.

4

Task A Task B Task C Task D

_ -~ Dependencies found by brute force only

__— Dependencies found by brute force and by algorithm

Figure 3: Example motivating observation 4. Events labeled e and e,, correspond to those
in the observation.

Task A Task B Task C

__— Dependencies found by brute force and algorithm

_ _— Dependencies found by brute force only

Figure 4: Example requiring two applications of observation 4.

3 Testing Random Traces

As mentioned before, we have a limited number of real programs on which to test our
algorithms. Thus we have built a simple random program generator that creates input
traces. In order to determine the effectiveness of our algorithms we have also built a simple
brute force trace analyzer that exactly determines the “always happens before” relationship.

A trace of an execution is simply a totally ordered list of signal and wait events together
with an indication of which task performed each event. As events are entered in the trace
only when the associated operation completes, every prefix of the trace contains at least as
many signal events on each semaphore as wait events.

The “program” corresponding to the trace can be viewed as in Figures 1, 2, 3, and 4.
There the events are grouped in vertical lists by task. Within each vertical list the events
appear in the same order as they occurred in the trace. A “state” of the program corresponds
to selecting a (possibly empty) prefix of each vertical list. Usually some program states are
unreachable by any execution. For example, in Figure 4 the state where Tasks A and B have
executed no events but Task C has executed its first event (W) is unreachable as the wait
cannot complete until after semaphore 1 has been signaled.

The brute force analyzer performs a depth-first search on the program’s (exponentially
large) state space to discover all of the reachable states. If event e; has been executed in every
reachable state where event e; has been executed then the brute force analyzer indicates that
e1 “must happen before” e;. Performing this test for each pair of events allows the brute
force analyzer to compute the “must happen before” relationship for the “program”.

If a real program makes conditional branches that could be affected by races, then the
the brute force analyzer may overestimate the “must happen before” relationship. Our
algorithms also have this drawback as noted in the introduction. However, even the overesti-
mated “must happen before” relationship allows the race affecting the conditional branch to
be flagged. Our experiments concentrate on how often the “must happen before” relationship
computed by our other algorithms matches that returned by the brute force analyzer.

The random trace generator uses the parameters MaxTasks, MaxSemaphores, and
NumEvents. For each trace pick NumTasks (between 2 and MaxTasks) and NumSemaphores
(between 1 and MaxSemaphores) uniformly at random. Once these values have been set,
the generator executes the loop in Figure 5 to output the trace of a non-blocking execution.

At the time of this writing we have done only a few tests aimed at determining the
accuracy of the algorithm, but the numbers are very encouraging. The results are given in
Table 1.

4 Conclusion

Our approach of using randomly generated programs to improve our algorithms has been
extremely successful. When applied to small randomly generated straight line parallel pro-
grams, our new algorithm failed to find all “must happen before” edges less than 0.25% of
the time. We believe that for real programs the failure rate will be significantly lower.

while less than NumEvents generated do
select T randomly between 1 and NumTasks
select sem randomly between 1 and NumSemaphores
if more signals than waits have been generated for sem
then
flip a coin
if heads then output: Wi, by task T
if tails then output: S, by task T
else
output: Sgen, by task T
end while

Figure 5: Random program generator.

of events || original | depth 1 | depth 2 | depth 3 | total # of traces
30 54 3 0.26 0.05 5726
35 58 3.7 1.4 1.1 840
40 59 3.4 0.75 0.56 1070

Table 1: Percentage of random traces that failed to find at least one edge when compared to
the actual “must happen before” partial order. Results are given for the original algorithm
and for our revised algorithm with the depth of recursion set as indicated.

References

[Fid88] C. J. Fidge. Partial orders for parallel debugging. In Proc. Workshop on Parallel
and Distributed Debugging, pages 183-194, May 1988.

[HMWar| D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Determining possible event
orders by analyzing sequential traces. [EEE Transactions on Parallel and Dis-
tributed Systems, to appear. Also UCSC Tech. Rep. UCSC-CRL-91-36.

[Mat88] F. Mattern. Virtual time and global states of distributed systems. In M. Cosnard,
editor, Proceedings of Parallel and Distributed Algorithms, 1988.

[NG92] R. H. B. Netzer and S. Ghosh. Efficient race condition detection for shared-
memory programs with Post/Wait synchronization. In Proc. International Conf.
on Parallel Processing, 1992.

[NM91] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race detection.
SIGPLAN Notices (Proc. PPOPP), 26(7):133-144, 1991.

A Algorithm Details

Before each trace is analyzed, every event contained in that trace is assigned a vector times-
tamp. A timestamp contains one entry for each task. For a timestamp 7, 7[7] is the number
of events completed by task 7; at the time the event associated with 7 completed. When
properly maintained, ordered and unordered event pairs can can easily be distinguished by
comparing their time vectors.

An event e with timestamp 7(e) precedes another event e’ with timestamp 7(e’) in the
partial order if and only if every component of 7(e) is less than or equal to the corresponding
component of 7(e'). Events e and ¢’ are unrelated in the partial order when both some
component of 7(e) is greater than the corresponding component of 7(e’), and some (other)
component of 7(e’) is greater than the corresponding component in 7(e).

Definition 1 For any two time vectors m, Ty in Z"
1. 7 <1y <= Vi(1i[i] < 1li])
2 Mm<m<<=n<madm #T
3. T F 1 <= Ji(n]i] < nli])
The time vector T, is earlier than time vector 7o (or 7 is later than 1) when 71 < 7.

At present, we use three algorithms to build the partial orders which approximate the
ordering properties of events in a program trace. The first extracts the corresponding partial
order from the event trace. The second modifies this partial order to ensure that it is valid
for all possible executions in which the same events occur. The third uses the observations

presented earlier in this paper to add back some ordering arcs which still are present in all
executions.

Before defining our algorithms it is necessary to define a few common functions that we
employ:

Definition 2 For any m time vectors 7y, ..., T, of Z™
e ming(7i,...,7m), k > 0 is the vector of Z™ whose ith component is the k™ smallest
element in the collection i), 72[t], - . ., T[],
e max(7i,...,Tm) s the vector in Z™ whose ith component is max (71, ..., Tm|[t]).
Conventionally, we define ming(7y, ..., 7) to be 0, the all-zero vector.

As an example, ming([1, 2], 1, 3], 2,4], 2,5], 3,2]) is [2, 3.
We also employ two special types of timestamps:

Definition 3 Given an event e performed by task T, in a trace, let 7% (e) be the time vec-
tor containing the local event count for e (one more than the number of events previously
performed by T; in the trace) in the ith component and zeros elsewhere.

Definition 4 Given an event e performed by task T; in a trace, let e denote the previous
event performed by T; in that trace (or the all zero vector if no such an event exists).

To obtain an initial partial order for an execution trace, on which further analysis can be
based, we use an algorithm based on the one provided in Fidge [Fid88] and Mattern [Mat88|.
This process associates a Wait event with an unused Signal event on the same semaphore,
creating a partial order which pairs every Wait event with a Signal event which allowed it to
precede. This generates a partial order that contains orderings that are not “must happen
before” orderings. Instead, this partial order represents the causal orderings that did occur
in a particular execution.

To generalize this partial order information to make it valid for all possible executions
containing the same events, we use a process called rewinding (Algorithm 1) to decouple
Wait events from specific Signal events. After rewinding, every Wait event has a time vector
that reflects the assumption that any Signal (on the same semaphore) could have been the
Signal that triggered the Wait.

Algorithm 1 (Rewind)

Repeat the following procedure until no further changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
let €] ...ej be all the Signal events on S;

set vs = min(7(ef), ..., 7(e));
else
set v, = 0, the all zero vector;
end if;
set 7(e) = max(7(e?), 77 (e), vs);
end for;

Unfortunately, the newly established safe order relation is too conservative because some
“must happen before” ordering arcs are deleted as a part of the rewind procedure. At this
point we apply an algorithm based on the observations described in Section 2.

The Expand algorithm (Algorithm 2) cycles through the entire timestamp representation
of the trace, using a routine called modi fy to advance the timestamps of Wait events based
on Observation 4.

It does this by considering the set of Signal events, R, and the set of Wait events, W, that
exist in relation to two timestamps: 7;, and 7(¢). Timestamp 7;, is an amalgamated times-
tamp representing all the events previously considered through recursive calls to modify. It
will act as the event e, in the current application of Observation 4. Event é functions as
the Signal e; from Observation 4. The quantity depth indicates the number of times that
Observation 4 is to be recursively applied.

Function modify builds up a set, T, of virtual timestamps returned by calling modi fy
recursively on the events in R. It then employs Observation 3, taking the £ component-wise
minimum of 7' (where k is the number of Wait events in W) to determine the earliest time
that € can occur. It then returns é’s new timestamp in the quantity 7,,.

Finally, the main loop takes the timestamp returned by modi fy for a specific Wait event,
and uses Max to combine it with 7(eP) and 77 (e).

10

Algorithm 2 (Recursive Expand):

Repeat the following procedure until no more changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
7(e) = modify(r(e), T(e), e, depth);
set 7(e) = max(7(e), 7(eP), T(e));
else
set 7(e) = max(7(e), 7(eP));
end if;
end for;

Function modi fy(Tyase; Tin, €, depth):
let 7, = 7(€)
if depth =0
return(7,,);
end if;
for each semaphore o,
let T = (;
let W (o) = {ey : ey is a Wait event on o, and
either 7(ey) < Tin or T(ey) < 7(é) };
let R(o) = {es : e is a Signal event on o,
T(es) 2 Tin and 7(e5) < Tpase};
for each e4 in R,
T = Max(Tin, T(€));
T = {modify(Thase, T, €s, (depth — 1))} U T
end for;
let £k =| W(o) [;
let Ts = ﬁk(T),
let 7, = Max(Tp, 75);
end for;
return(7;,);

11

