
Experience Report: Business Automation with Distributed Objects

Jason Rogers, Dean Mackie, Angus MacArthur
Ontario Teachers’ Pension Plan Board

5650 Yonge St
Toronto, Ontario

Canada M2M 4H5
Tel: (877) 812 7989
Fax: (800) 949 8202
http://www.otpp.com

jrogers@otpp.com
dmackie@otpp.com
amacarth@otpp.com

Abstract

A large financial institution was faced with the challenge of having to process twice the normal

yearly workload without increasing their workforce. The challenge was met by reusing

components of an existing object oriented application in a distributed, fully automated

configuration. That solution is discussed, along with subsequent system architecture evolution,

resulting improvements to development practices, and the ripple effects of changing the culture of

senior management that it was designed to serve.

Introduction

The Ontario Teachers' Pension Plan, with over $73 billion in assets, is the single largest pension

plan in Canada. It is responsible for the pension income of approximately 153,000 elementary

and secondary school teachers, and 77,000 retired teachers and their families. The customer

service department enjoys a reputation within the pension industry for using leading-edge

information technology to provide direct and strategic support to internal core businesses,

resulting in exemplary service to plan members

The Benefit Entitlement System for Teachers (BEST) has been in production since December

1995. It is an internally developed Smalltalk application that makes extensive use of object-

oriented practices, such as architectural layering and automated regression testingi.

The focus of BEST is on business process automation and system integration. For example, the

system has the ability to automatically detect an incoming phone call from a client, pre-fetch the

necessary data and present it to the customer service agent. At the request of the client, the agent

has the ability to generate personalized estimates with several different retirement scenarios.

Using our workflow system, an electronic version of an estimate letter is passed to our Quality

Assurance department for manual double-checking. Once approved, it is passed to the mailroom

where the document is electronically archived, printed, and mailed.

In April of 1998 an early retirement incentive for teachers was announced. We were faced with

the prospect of processing twice as many retirements as any previous year and handling many

more phone calls and requests for personalized estimates. Failure to deal with the increased

demand for retirements would have resulted in serious financial hardship for some of our clients.

Our employees require twelve months of specialized training to become proficient, so adding

more people wasn’t an option.

What follows is a description of how objects were used to solve the problem and how the solution

resulted in several unexpected changes. The system architecture changed from client-server to

distributed objects; our development practices shifted from automating individual steps in a

business process to automating full business processes; and the solution had the ripple effect of

changing the culture of our company including its senior management.

The Initial Solution

When the early retirement announcement was made, the development group suggested

automating the processing of these retirements as a way of meeting the increased workload.

Existing objects would be reused because regression tests that tested the end-to-end processing

were running cleanly. However, senior management was concerned because pensions would be

paid without human intervention. This was a valid concern because in general people only retire

once in their lifetime so getting their pension right the first time is very important. The risks were

deemed to be manageable because low risk cases were selected, very few problems had ever been

detected interactively, and a system to automate checking pensions was already on the drawing

board.

Once authorized, a solution was assembled that used an external workflow system for work

distribution, reused domain objects to calculate and process the pensions, and leveraged a custom

correspondence frameworkii to generate a confirmation letter. All the necessary logic was built

into a specialized application that ran on several computers.

We made several observations. Using our workflow system to delegate work was very

problematic because each program was working with cached workflow data that quickly become

stale. This caused contention problems such as one case being simultaneously processed by two

programs. Stressing the objects continuously raised problems with garbage collection that were

corrected by programmatically activating the garbage collector. The increased database

contention caused by many clients updating the same tables also exposed a bug that resulted in

duplicate relational keys being assigned. Even with these problems, the project was an overall

success because each of the 8,000 teachers who retired that summer was paid on time.

After repeating the process the following summer, it became obvious that full automation of this

process should become part of day-to-day business, not just at peak periods. What follows are

summaries of how the system architecture, development practices, and the business culture have

adapted to the new focus on full automation.

Changes to System Architecture

The system architecture of BEST changed from a fat client-server model to an architecture based

on a network of lightweight components distributed across the network. The main force behind

the transition was the creation of a framework for task scheduling that used a distributed

infrastructure. While migrating towards a distributed architecture several interesting problems

arose. To solve these problems, objects needed to be enhanced to become more resilient to the

forces of distribution.

The goal is to leverage our existing desktop computing resources with minimal changes to our

client application. This has led to our Dispatcher/Executor framework. The Dispatcher is a

broker residing on a remote host that is responsible for retrieving and dispatching work to a pool

of Executor enabled clients. The Executor is an extension to the desktop client code giving it the

ability to participate in a distributed architecture. It is able to receive jobs from a remote

Dispatcher, and delegate them appropriately to our business logic without any user intervention.

Upon completion of a job, the Executor notifies its Dispatcher that it is available for more work.

Dispatcher/Executor intercommunication was achieved using a vendor-supplied CORBA

solution. This mechanism is being reused to web-enable our internal applications.

Figure 1: The Dispatcher/Executor framework

The process of deploying systems with distributed objects raised several new issues that

previously hadn’t been a problem in our client-server model. As more projects automated

different tasks, it became clear that several different modes of process activation were required.

The activation modes we currently support in production are: event based, scheduled, scavenging,

and ad-hoc. Network hardware and software configuration problems had a fatal effect on our

system. Even though our physical distribution boundaries consisted of multiple floors within one

building, network problems caused inter-object communication failures, primarily due to time-

outs. Application-level re-try was considered, but discarded because our strategy was to assume

the worst possible case of partial failure and build facilities for easy detection and reporting of

problems. It was felt that re-try could compound problems as easily as fix them. Moving from a

single-threaded client environment to a multi-threaded environment forced us to protect objects

that weren’t thread-safe. In particular, our database façade singleton was not thread-safe and had

to be protected with a semaphore.

Our objects had to become more robust as they were distributed. Objects had to become self-

diagnostic because we discovered that even one runaway server object could sabotage an entire

process. For example, objects that couldn’t distinguish between a query that returned nothing

because there was no database connection and a query that returned nothing because nothing

matched the search criteria. To correct the problem logic was added to check the state of critical

Jobs

Executor Pool
(Desktop PC's)

Executor

Desktop
Client

Executor

Desktop
Client

Executor

Desktop
Client

Dispatch Host
(Desktop PC)

Dispatcher

IIOP

external resources. Another aspect of self-diagnosis is that some objects were enhanced to

perform heuristic checks previously done via human intervention.

Development Process Changes

Internal development processes have changed to accommodate development of systems with this

new architecture. A feedback loop has been developed to make all systems more robust by

upgrading core components to handle problems that only arise under extreme conditions, such as

high volume or object distribution. Testing procedures have changed to account for the system

architecture changes. There is an increased focus on reuse with the help of a framework for

modeling business processes as objects.

In an attempt to make the entire system more robust, problems that were only detected when the

application was subjected to the new stresses of distribution are fed back into core components.

The database façade problem and solution mentioned above is an example of this positive

feedback loop. We also uncovered calculation anomalies while processing large amounts of data.

Correcting those anomalies has made the system more accurate.

Testing processes have also been affected. Regression testing is now supplemented with

statistical sampling to determine confidence levels. Our internal test tool was distributed and now

has the ability to run regression test suites 33% faster. Another benefit of distributing the test tool

is that issues that only arise upon distribution arise sooner in the development cycle. Our typical

development progression involves starting with component level testing and quickly building

towards fully integrated testing.

This focus on automated systems with no user intervention has changed the way we determine

when a system is ready to deploy. Previously we had the luxury of people manually checking the

system results so any systematic problems in a new release could be detected and fixed quickly.

Now we have a graduated audit process that still begins at 100% audit but quickly drops down to

10% with most applications. We use statistical sampling of random data sets to determine

confidence levels. Our standard goal is 99% confidence that a maximum of 2% of the target

population is in error.

The introduction of our distributed framework highlighted the need for a common layer serving

up business functionality to both remote objects and our original user interfaces. Ideally, this

layer would be modular and flexible enough to support changing business processes. This led to

the introduction of our Process Frameworkiii. Simply put, this framework enables us to create

Step objects that we can compose into a flowchart-like structure. These steps in turn delegate

responsibility of implementation down to our business domain code. By doing this, we can

extract business processes embedded within our domain logic, and expose them as an application

layer. Having our business processes available in the application layer makes our core domain

code is more resilient to changes in business procedures. Steps can be rearranged, inserted or

removed without impacting our domain-level components.

One of the more positive effects of the process framework is that the turnaround time for

delivering new systems with fully automated functionality has decreased because new processes

are assembled from existing components. It has become possible to develop and deploy small

applications in two and three week cycles because of the ability to leverage existing process

objects.

A
pp

lic
at

io
n

La
ye

r
B

us
in

es
s

M
od

el

Testing
Suite

Desktop
UI Executor Web

Figure 2: Various clients accessing business functionality through the application layer.
Steps within the processes delegate responsibility to our feature-rich business model

Business Process Changes

Senior management has undergone a culture shift as a result of changes to system infrastructure.

Fully automated systems have enabled large scale, proactive customer service. Many other

manually-intensive tasks have been automated and completely offloaded from employees. The

casework procedures were adapted to use more information from automated system.

There have been several projects deployed which provide proactive customer service. One

system automatically corrects a pension when more timely information is received. Another

generated 30,000 personalized letters detailing the impact of prospective legislative changes.

The ongoing focus on offloading work from customer service agents has become more evident as

new projects arise. Problems that previously have been handled by adding interactive

functionality are now re-examined for the possibility of automated processing. For example,

when forced to deal with processing thousands of election forms for a benefit enhancement, the

decision was made to capture the request interactively and have an automated back-end process

do the work.

As automated systems become more prevalent, senior management indicated the need to know

why an automated process had rejected a particular piece of work. In response to this, reporting

was integrated into the workflow system. When a customer service agent is faced with

completing some work that the automated system has rejected, the workflow system presents a

checklist of things to correct before processing can be completed. This empowers customer

service agents to be knowledge workers, and eliminates clerical work.

Conclusion

A business challenge was met by reusing components of an existing object oriented application in

a distributed, fully automated configuration. This solution forced a fundamental change to

system architecture, improvements to development practices, and changes to the business culture.

The evolution of distributed components was critical to making our systems scale. Development

practices became more attuned to reuse and component assembly. Senior management

immediately recognized the potential of full process automation to enable the vision of

immediate, personalized service.

A new business problem is causing another fundamental change in how systems are developed,

deployed and used: customer self-service via the Internet. The lessons learned over the past five

years have been of great value as we face the challenges of web-enabling our business.

i Mackie, Dean, and Xue, Martin. Automated Testing of an Object Application. Experience Report for
OOPSLA 1998.
ii Mackie, Dean, et al. Applying a Design Pattern: Automatic Correspondence Generation. Experience
Report for OOPSLA 1999.
iii Manolescu, Dragos-Anton. Micro-Workflow: A Workflow Architecture Supporting Compositional
Object-Oriented Software Development PhD thesis
 Computer Science Technical Report UIUCDCS-R-2000-2186
 University of Illinois at Urbana-Champaign, October 2000, Urbana, Illinois

