
Space-Efficient Gradual Typing

David Herman1, Aaron Tomb2, and Cormac Flanagan2

1 Northeastern University
2 University of California, Santa Cruz

Abstract

Gradual type systems offer a smooth continuum between static and dynamic typing
by permitting the free mixture of typed and untyped code. Theruntime systems for
these languages—and other languages with hybrid type checking—typically enforce
function types by dynamically generating function proxies. This approach can result
in unbounded growth in the number of proxies, however, whichdrastically impacts
space efficiency and destroys tail recursion.
We present an implementation strategy for gradual typing that is based oncoercions
instead of function proxies, and which combines adjacent coercions to limit their space
consumption. We prove bounds on the space consumed by coercions as well as sound-
ness of the type system, demonstrating that programmers cansafely mix typing dis-
ciplines without incurring unreasonable overheads. Our approach also detects certain
errors earlier than prior work.

1 GRADUAL TYPING FOR SOFTWARE EVOLUTION

Dynamically typed languages have always excelled at exploratory programming.
Languages such as Lisp, Scheme, Smalltalk, and JavaScript support quick early pro-
totyping and incremental development without the overheadof documenting (often-
changing) structural invariants as types. For large applications, however, static type
systems have proven invaluable. They are crucial for understanding and enforcing
key program invariants and abstractions, and they catch many errors early in the
development process.

Given these different strengths, it is not uncommon to encounter the following
scenario: a programmer builds a prototype in a dynamically-typed scripting lan-
guage, perhaps even in parallel to a separate, official software development pro-
cess with an entire team. The team effort gets mired in process issues and over-
engineering, and the programmer’s prototype ends up getting used in production.
Before long, this hastily conceived prototype grows into a full-fledged production
system, but without the structure or guarantees provided bystatic types. The system
becomes unwieldy; QA can’t produce test cases fast enough and bugs start cropping
up that no one can track down. Ultimately, the team decides toport the application
to a statically typed language, requiring a complete rewrite of the entire system.

The cost of cross-language migration is huge and often insupportable. But the
scenario above is avoidable. Several languages combine static and dynamic typ-
ing, among them Boo [7], Visual Basic.NET [19], Sage [16], and PLT Scheme [24].
This approach ofhybrid typing, where types are enforced with a combination of

XXVIII–1

static and dynamic checks, has begun to gain attention in theresearch commu-
nity [5, 16, 22, 24, 19, 2]. Recently, Siek and Taha [22, 23] coined the slogangradual
typing for this important application of hybrid typing: the ability to implement both
partially-conceived prototypes and mature, production systems in the same program-
ming language by gradually introducing type discipline. Gradual typing offers the
possibility of continuous software evolution from prototype to product, thus avoiding
the huge costs of language migration.

Our recent experience in the working group on the JavaScript[8] language spec-
ification provides a more concrete example. JavaScript is a dynamically-typed func-
tional programming language that is widely used for scripting user interactions in
web browsers, and is a key technology in Ajax applications [15]. The enormous
popularity of the language is due in no small part to its low barrier to entry; anyone
can write a JavaScript program by copying and pasting code from one web page to
another. Its dynamic type system and fail-soft runtime semantics allow programmers
to produce something thatseemsto work with a minimum of effort. The increasing
complexity of modern web applications, however, has motivated the addition of a
static type system. The working group’s intention is not to abandon the dynamically-
typed portion of the language—because of its usefulness andto retain backwards
compatibility—but rather to allow typing disciplines to interact via a hybrid system
that supports gradual typing.1

1.1 The Cost of Gradual Typing

Gradually-typed languages support both statically-typedand dynamically-typed code,
and include runtime checks (or type casts) at the boundariesbetween these two typ-
ing disciplines, to guarantee that dynamically-typed codecannot violate the invari-
ants of statically-typed code. To illustrate this idea, consider the following code
fragment, which passes an untyped variablex into a variabley of typeInt:

let x = true in . . . let y : Int= x in . . .

During compilation, the type checker inserts a dynamic typecast〈Int〉 to enforce
the type invariant ony; at run-time, this cast detects the attempted type violation:

let x = true in . . . let y : Int= (〈Int〉 x) in . . .

−→∗
Error : “failed cast”

Unfortunately, even these simple, first-order type checks can result in unexpected
costs, as in the following example, where a programmer has added some type anno-
tations to a previously untyped program:

even = λn:Int. if (n = 0) then true else odd(n−1)
odd : Int→ Bool= λn:Int. if (n = 0) then false else even(n−1)

1The JavaScript specification is a work in progress, but gradual typing is a key design
goal [9].

XXVIII–2

This program seems innocuous, but suffers from a space leak.Sinceevenis dynam-
ically typed, the result of each call toeven(n−1) must be cast toBool, resulting in
unbounded growth in the control stack and destroying tail recursion.

Additional complications arise when first-class functionscross the boundaries
between typing disciplines. In general, it is not possible to check if an untyped func-
tion satisfies a particular static type. A natural solution is to wrap the function in a
proxy that, whenever it is applied, casts its argument and result values appropriately,
ensuring that the function is only observed with its expected type. This proxy-based
approach is used heavily in recent literature [11, 12, 16, 18, 22], but has serious
consequences for space efficiency.

As a simple example, consider the following program in continuation-passing
style, where both mutually recursive functions take a continuation argumentk, but
only one of these arguments is annotated with a precise type:

even= λn:Int. λk:(?→?). if (n = 0) then (k true) else odd(n−1) k
odd = λn:Int. λk:(Bool→ Bool). if (n = 0) then (k false) else even(n−1) k

Here, the recursive calls toodd andevenquietly cast the continuation argumentk
with higher-order casts〈Bool→ Bool〉 and〈?→?〉, respectively. This means that
the function argumentk is wrapped in an additional function proxy at each recursive
call!

The flexibility promised by gradual typing can only be achieved if programmers
are free to decide how precisely to type various parts of a program. This flexibility
is lost if adding type annotations can accidentally triggerasymptotic changes in its
space consumption. In short, existing implementation techniques for gradual typing
suffer from unacceptable space leaks.

1.2 Space-Efficient Gradual Typing

We present an implementation strategy for gradual typing that overcomes these prob-
lems. Our approach hinges on the simple insight that when proxies accumulate
at runtime, they often contain redundant information. In the higher-order exam-
ple above, the growing chain of function proxies contains only two distinct compo-
nents,Bool→ Bool and ?→?, which could be merged to the simpler but equivalent
Bool→ Bool proxy.

Type casts behave likeerror projections[10], which are closed under compo-
sition. However, the syntax of casts does not always compose; for example, there
is no castc such that〈c〉 e= 〈Int〉 〈Bool〉 e. Furthermore, projections are idem-
potent, which should allow us to eliminate duplicate casts.For example,〈Bool→
Bool〉 〈Bool→ Bool〉 e= 〈Bool→ Bool〉 e. But such transformations are inconve-
nient, if not impossible, with a representation of higher-order type casts as functions.

Our formalization instead leverages Henglein’scoercion calculus[17], which
provides a syntax for projections, called coercions, whichare closed under a compo-
sition operator. This allows us to combine adjacent coercions in order to eliminate
redundant information and thus guarantee clear bounds on space consumption. By

XXVIII–3

eagerly combining coercions, we can also detect certain errors immediately as soon
as a function cast is applied; in contrast, prior approacheswould not detect these
errors until the casted function is invoked.

Our approach is applicable to many hybrid-typed languages [12, 13, 16] that use
function proxies and hence are prone to space consumption problems. For clarity, we
formalize our approach for the simply-typedλ-calculus with references. Of course,
gradual typing is not restricted to such simple type systems: the Sage language [16]
incorporates gradual typing as part of a very expressive type system with polymor-
phic functions, type operators, first-class types, dependent types, general refinement
types, etc. Concurrently, Siek and Taha [22] developed gradual typing for the simpler
languageλ?

→, which we use as the basis for this presentation.
The presentation of our results proceeds as follows. The following section re-

views the syntax and type system ofλ?
→. Section 3 introduces the coercion algebra

underlying our approach. Section 4 describes how we compilesource programs into
a target language with explicit coercions. Section 5 provides an operational seman-
tics for that target language, and Section 6 proves bounds onthe space consumption.
Section 7 extends our approach to detect errors earlier and provide better coverage.
The last two sections place our work into context.

2 GRADUALLY-TYPED LAMBDA CALCULUS

This section reviews the gradually-typedλ-calculusλ?
→. This language is essentially

the simply-typedλ-calculus extended with the type ? to represent dynamic types; it
also includes mutable reference cells to demonstrate the gradual typing of assign-
ments.

Terms: e ::= k | x | λx:T. e | e e| ref e | !e | e := e
Types: S,T ::= B | T → T | ? | Ref T

Terms include the usual constants, variables, abstractions, and applications, as
well as reference allocation, dereference, and assignment. Types include the dy-
namic type ?, function typesT → T, reference typesRef T, and some collection of
ground or base typesB (such asInt or Float).

Theλ?
→ type system is a little unusual in that it is based on an intransitiveconsis-

tencyrelationS∼ T instead of the more conventional, transitive subtyping relation
S <: T. Any type is consistent with the type ?, from which it followsthat, for exam-
ple,Bool ∼ ? and ?∼ Int. However, booleans cannot be used directly as integers,
which is why the consistency relation is not transitively closed. We do not assume
the consistency relation is symmetric, since a language might, for example, allow
coercions from integers to floats but not vice-versa.

The consistency relation is defined in Figure 1. Rules[C-DYNL] and[C-DYNR]
allow all coercions to and from type ?. The rule[C-FLOAT] serves as an example of
asymmetry by allowing coercion fromInt to Float but not the reverse. The rule
[C-FUN] is reminiscent of the contravariant/covariant rule for function subtyping.

XXVIII–4

Figure 1: Source Language Type System

Consistency rules S∼ T

[C-REFL]

T ∼ T

[C-DYNR]

T ∼ ?

[C-DYNL]

? ∼ T

[C-FLOAT]

Int ∼ Float

[C-FUN]

T1 ∼ S1 S2 ∼ T2

(S1 → S2) ∼ (T1 → T2)

[C-REF]

T ∼ S S∼ T

Ref S∼ Ref T

Type rules E ⊢ e : T

[T-VAR]

(x : T) ∈ E

E ⊢ x : T

[T-FUN]

E,x : S⊢ e : T

E ⊢ (λx:S. e) : (S→ T)

[T-CONST]

E ⊢ k : ty(k)

[T-A PP1]

E ⊢ e1 : (S→ T) E ⊢ e2 : S′ S′ ∼ S

E ⊢ (e1 e2) : T

[T-A PP2]

E ⊢ e1 :? E ⊢ e2 : S

E ⊢ (e1 e2) :?

[T-REF]

E ⊢ e : T

E ⊢ ref e : Ref T

[T-DEREF1]

E ⊢ e : Ref T

E ⊢!e : T

[T-DEREF2]

E ⊢ e :?

E ⊢!e :?

[T-A SSIGN1]

E ⊢ e1 : Ref T E ⊢ e2 : S S∼ T

E ⊢ e1 := e2 : S

[T-A SSIGN2]

E ⊢ e1 :? E ⊢ e2 : T

E ⊢ e1 := e2 :?

We extend the invariant reference cells ofλ?
→ to allow coercion fromRef Sto Ref T

via rule [C-REF], providedSandT are symmetrically consistent. Unlike functions,
reference cells do not distinguish their output (“read”) type from their input (“write”)
type, so coercion must be possible in either direction. For example, the two reference
typesRef Int andRef ? are consistent.

Figure 1 also presents the type rules for the source language, which are mostly
standard. Notice the presence of two separate rules for procedure application. Rule
[T-A PP1] handles the case where the operator is statically-typed as afunction; in this
case, the argument may have any type consistent with the function’s domain. Rule
[T-A PP2] handles the case where the operator is dynamically-typed, in which case
the argument may be of any type. The two rules for assignment follow an analogous
pattern, accepting a consistent type when the left-hand side is known to have type
Ref T, and any type when the left-hand side is dynamically-typed.Similarly, deref-
erence expressions only produce a known type when the argument has a reference
type.

XXVIII–5

3 COERCIONS

To achieve a space-efficient implementation, we compile source programs into a
target language with explicit type casts, which allow expressions of one type to be
used at any consistent type. Our representation of casts is based oncoercions, drawn
from Henglein’s theory of dynamic typing [17]. The key benefit of coercions over
prior proxy-based representations is that they arecombinable; if two coercions are
wrapped around a function value, then they can be safely combined into a single
coercion, thus reducing the space consumption of the program without changing its
semantic behavior.

The coercion language and its typing rules are both defined inFigure 2. The
coercion judgment⊢ c : S T states that coercionc serves to coerce values from
type S to typeT. The identity coercionI (of type⊢ c : T T for any T) always
succeeds. Conversely, the failure coercionFail always fails. For each dynamic
type tagD there is an associated tagging coercionD! that produces values of type ?,
and a corresponding check-and-untag coercionD? that takes values of type ?. Thus,
for example, we have⊢ Int! : Int ? and⊢ Int? : ? Int.

The function checking coercionFun? converts a value of type ? to have the dy-
namic function type ?→?. If a more precise function type is required, this value
can be further coerced via a function coercionFun c d, wherec coerces function ar-
guments andd coerces results. For example, the coercion (Fun Int? Int!) coerces
from ?→? toInt→ Int, by untagging function arguments (viaInt?) and tagging
function results (viaInt!). Reference coercions also contain two components: the
first for coercing values put into the reference cell; the second for coercing values
read from the cell. Finally, the coercionc;d represents coercion composition,i.e.,
the coercionc followed by coerciond.

This coercion language is sufficient to translate between all consistent types:
if types S andT are consistent, then the following partial functioncoerce(S,T) is
defined and returns the appropriate coercion between these types.

coerce: Type×Type → Coercion

coerce(T,T) = I
coerce(B,?) = B!
coerce(?,B) = B?

coerce(Int,Float) = IntFloat

coerce(S1 → S2,T1 → T2) = Fun coerce(T1,S1) coerce(S2,T2)
coerce(?,T1 → T2) = Fun?;coerce(?→?,T1 → T2)
coerce(T1 → T2,?) = coerce(T1 → T2,?→?);Fun!

coerce(Ref S,Ref T) = Ref coerce(T,S) coerce(S,T)
coerce(?,Ref T) = Ref?;coerce(Ref ?,Ref T)
coerce(Ref T,?) = coerce(Ref T,Ref ?);Ref!

XXVIII–6

Figure 2: Coercion Language and Type Rules

Coercions: c,d ::= I | Fail | D! | D? | IntFloat | Fun c c | Ref c c | c;c
Dynamic tags: D ::= B | Fun | Ref

Coercion rules ⊢ c : S T

[C-ID]

⊢ I : T T

[C-FAIL]

⊢ Fail : S T

[C-B!]

⊢ B! : B ?

[C-B?]

⊢ B? : ? B

[C-FUN!]

⊢ Fun! : (?→?) ?

[C-FUN?]

⊢ Fun? : ? (?→?)

[C-FUN]

⊢ c1 : T ′
1 T1 ⊢ c2 : T2 T ′

2

⊢ (Fun c1 c2) : (T1 → T2) (T ′
1 → T ′

2)

[C-REF!]

⊢ Ref! : (Ref ?) ?

[C-REF?]

⊢ Ref? : ? (Ref ?)

[C-REF]

⊢ c : T S ⊢ d : S T

⊢ (Ref c d) : (Ref S) (Ref T)

[C-COMPOSE]

⊢ c1 : T T1 ⊢ c2 : T1 T2

⊢ (c1;c2) : T T2

[C-FLOAT]

⊢ IntFloat : Int Float

Coercing a typeT to itself produces the identity coercionI . Coercing base typesB
to type ? requires a tagging coercionB!, and coercing ? to a base typeB requires
a runtime checkB?. Function coercions work by coercing their domain and range
types. The type ? is coerced to a function type via a two-step coercion: first the value
is checked to be a function and then coerced from the dynamic function type ?→?
to T1 → T2. Dually, typed functions are coerced to type ? via coercion to a dynamic
function type followed by the function tagFun!. Coercing aRef Sto aRef T entails
coercing all writes fromT to Sand all reads fromS to T. Coercing reference types
to and from ? is analogous to function coercion.

Lemma 1 (Well-typed coercions).

1. S∼ T iff coerce(S,T) is defined.

2. If c= coerce(S,T) then⊢ c : S T.

Proof. Inductions on the derivations ofS∼ T andcoerce(S,T).�

XXVIII–7

Figure 3: Target Language Syntax and Type Rules

Terms: s,t ::= x | u | t t | ref t | !t | t := t | 〈c〉 t
Values: v ::= u | 〈c〉 u

Uncoerced values: u ::= λx:T. t | k | a
Stores: σ ::= /0 | σ[a := v]

Typing environments: E ::= /0 | E,x : T
Store typings: Σ ::= /0 | Σ,a : T

Type rules E;Σ ⊢ t : T E;Σ ⊢ σ

[T-VAR]

(x : t) ∈ E

E;Σ ⊢ x : T

[T-FUN]

E,x : S;Σ ⊢ t : T

E;Σ ⊢ (λx:S. t) : (S→ T)

[T-A PP]

E;Σ ⊢ t1 : (S→ T) E;Σ ⊢ t2 : S

E;Σ ⊢ (t1 t2) : T

[T-REF]

E;Σ ⊢ t : T

E;Σ ⊢ ref t : Ref T

[T-DEREF]

E;Σ ⊢ t : Ref T

E;Σ ⊢!t : T

[T-A SSIGN]

E;Σ ⊢ t1 : Ref T E;Σ ⊢ t2 : T

E;Σ ⊢ t1 := t2 : T

[T-CONST]

E;Σ ⊢ k : ty(k)

[T-CAST]

⊢ c : S T E;Σ ⊢ t : S

E;Σ ⊢ 〈c〉 t : T

[T-A DDR]

(a : T) ∈ Σ
E;Σ ⊢ a : Ref T

[T-STORE]

dom(σ) = dom(Σ)
∀a∈ dom(σ). E;Σ ⊢ σ(a) : Σ(a)

E;Σ ⊢ σ

4 TARGET LANGUAGE AND CAST INSERTION

During compilation, we both type check the source program and insert explicit type
casts where necessary. The target language of this cast insertion process is essentially
the same as the source, except that it uses explicit casts of the form〈c〉 t as the only
mechanism for connecting terms of type ? and terms of other types. For example,
the term〈Int?〉 x has typeInt, provided thatx has type ?. The language syntax and
type rules are defined in Figure 3, and are mostly straightforward. The language also
includes addressesa which refer to a global storeσ, and the store typing environment
Σ maps addresses to types.

The process of type checking and inserting coercions is formalized via thecast
insertion judgment:

E ⊢ e →֒ t : T

Here, the type environmentE provides types for free variables,e is the original
source program,t is a modified version of the original program with additionalco-
ercions, andT is the inferred type fort. The rules defining the cast insertion judg-
ment are shown in Figure 4, and they rely on the partial function coerceto compute

XXVIII–8

Figure 4: Cast Insertion Rules

Cast insertion rules E ⊢ e →֒ t : T

[C-VAR]

(x : T) ∈ E

E ⊢ x →֒ x : T

[C-CONST]

E ⊢ k →֒ k : ty(k)

[C-FUN]

E,x : S⊢ e →֒ t : T

E ⊢ (λx:S. e) →֒ (λx:S. t) : (S→ T)

[C-APP1]

E ⊢ e1 →֒ t1 : (S→ T) E ⊢ e2 →֒ t2 : S′ c = coerce(S′,S)

E ⊢ e1 e2 →֒ (t1 (〈c〉 t2)) : T

[C-APP2]

E ⊢ e1 →֒ t1 :? E ⊢ e2 →֒ t2 : S′ c = coerce(S′,?)

E ⊢ e1 e2 →֒ ((〈Fun?〉 t1) (〈c〉 t2)) :?

[C-REF]

E ⊢ e →֒ t : T

E ⊢ ref e →֒ ref t : Ref T

[C-DEREF1]

E ⊢ e →֒ t : Ref T

E ⊢!e →֒ !t : T

[C-DEREF2]

E ⊢ e →֒ t :?

E ⊢!e →֒ !(〈Ref?〉 t) :?

[C-ASSIGN1]

E ⊢ e1 →֒ t1 : Ref S E⊢ e2 →֒ t2 : T c= coerce(T,S)

E ⊢ e1 := e2 →֒ (t1 := (〈c〉 t2)) : S

[C-ASSIGN2]

E ⊢ e1 →֒ t1 :? E ⊢ e2 →֒ t2 : T c= coerce(T,?)

E ⊢ e1 := e2 →֒ ((〈Ref?〉 t1) := (〈c〉 t2)) :?

coercions between types. For example, rule[C-APP1] compiles an application ex-
pression where the operator has a function typeS→ T by casting the argument
expression from to typeS. Rule [C-APP2] handles the case where the operator is
dynamically-typed by inserting a〈Fun?〉 check to ensure the operator evaluates to a
function and casting the argument to type ? to yield tagged values. Rules[C-REF] and
[C-DEREF1] handle typed reference allocation and dereference. Rule[C-DEREF2]
handles dynamically-typed dereference by inserting a runtime 〈Ref?〉 check. Rule
[C-ASSIGN1] handless statically-typed assignment, casting the right-hand side to the
expected type of the reference cell, and[C-ASSIGN2] handles dynamically-typed as-
signment, casting the left-hand side with a runtime〈Ref?〉 check and the right-hand
side with a tagging coercion to type ?.

Compilation succeeds on all well-typed source programs, and produces only
well-typed target programs.

Theorem 2 (Well-typed cast insertion).For all E, e, and T , the following state-
ments are equivalent:

1. E⊢ e : T

2. ∃ t such that E⊢ e →֒ t : T and E; /0 ⊢ t : T

XXVIII–9

Proof. Inductions on the cast insertion and source language typingderivations.�

5 OPERATIONAL SEMANTICS

We now consider how to implement the target language in a manner that limits the
space consumed by coercions. The key idea is to combine adjacent casts to eliminate
redundant information while preserving the semantic behavior of programs.

Figure 5 provides the definitions and reduction rules for thetarget language,
using a small-step operational semantics with evaluation contexts. For simplicity,
we present our results here in a substitution semantics.2 The grammar of evaluation
contextsC is defined to prevent nesting of adjacent casts. This restriction allows
the most important reduction rule,[E-CCAST], to ensure that adjacent casts in the
program term are always merged.

In order to maintain bounds on their size, coercions are maintained normalized
throughout evaluation according to the following rules:

I ;c = c
c; I = c

Fail;c = Fail

c;Fail = Fail

D!; D? = I
D!; D′? = Fail if D 6= D′

(Fun c1 c2);(Fun d1 d2) = Fun (d1;c1) (c2;d2)
(Ref c1 c2);(Ref d1 d2) = Ref (d1;c1) (c2;d2)

This normalization is applied in a transitive, compatible manner whenever the rule
[E-CCAST] is applied, thus bounding the size of coercions during evaluation.

Most of the remaining reduction rules are straightforward.Rules [E-BETA],
[E-NEW], [E-DEREF], and [E-ASSIGN] are standard. The rule[E-PRIM] relies on a
type-indexed family of functionsδT : Term×Term→ Termto define the semantics
of constant functions. We assume eachδS→T to be well-typed and, for simplicity, de-
fined for all constantsk : S→ T and argumentsv : S. Rule[E-CAPP] applies function
casts by casting the function argument and result. Rule[E-CDEREF] casts the result
of reading a cell and[E-CASSIGN] casts the value written to a cell and casts the value
again to the expected output type. Rules[E-ID] and[E-FCAST] respectively perform
the identity and float coercions, and are restricted to non-cast contexts to prevent
overlap with[E-CCAST].

Evaluation satisfies the usual preservation and progress lemmas.

Theorem 3 (Soundness of evaluation).If /0; /0 ⊢ t : T then either

1. t, /0 diverges,

2. t, /0 −→∗ C[〈Fail〉 u],σ or

3. t, /0 −→∗ v,σ and∃Σ such that/0;Σ ⊢ v : T and /0;Σ ⊢ σ.

Proof. Via standard subject reduction and progress lemmas in the style of Wright
and Felleisen [24].�

2For a discussion of more detailed models of space usage, see Section 9.

XXVIII–10

Figure 5: Operational Semantics

Evaluation Contexts: C::= • | (C t) | (v C) | refC | !C |C := t | v := C | 〈c〉 D
Nested Contexts: D::= • | (C t) | (v C) | refC | !C |C := t | v := C

C[(λx:S. t) v],σ −→ C[t[x := v]],σ [E-BETA]
C[ref v],σ −→ C[a],σ[a := v] for a 6∈ dom(σ) [E-NEW]

C[!a],σ −→ C[σ(a)],σ [E-DEREF]
C[a := v],σ −→ C[v],σ[a := v] [E-ASSIGN]

C[k v],σ −→ C[δty(k)(k,v)],σ [E-PRIM]
C[(〈Fun c d〉 u) v],σ −→ C[〈d〉 (u (〈c〉 v))],σ [E-CAPP]
C[!(〈Ref c d〉 a)],σ −→ C[〈d〉 !a],σ [E-CDEREF]

C[(〈Ref c d〉 a) := v],σ −→ C[〈d〉 (a := 〈c〉 v)],σ [E-CASSIGN]
C[〈I〉 u],σ −→ C[u],σ if C 6= C′[〈c〉 •] [E-ID]

C[〈IntFloat〉 n],σ −→ C[nearestFloat(n)],σ if C 6= C′[〈c〉 •] [E-FCAST]
C[〈c〉 (〈d〉 t)],σ −→ C[〈d;c〉 t],σ [E-CCAST]

6 SPACE EFFICIENCY

We now consider how much space coercions consume at runtime,beginning with an
analysis of how much space each individual coercion can consume.

6.1 Space Consumption

The size of a coercionsize(c) is defined as the size of its abstract syntax tree rep-
resentation. When two coercions are sequentially composedand normalized during
evaluation, the size of the normalized, composed coercion may of course be larger
than either of the original coercions. In order to reason about the space required by
such composed coercions, we introduce a notion of theheightof a coercion:

height(I) = height(Fail) = height(D!) = height(D?) = 1
height(Ref c d) = height(Fun c d) = 1+max(height(c),height(d))
height(c;d) = max(height(c),height(d))

Notably, the height of a composed coercion is bounded by the maximum height of
its constituents. In addition, normalization never increases the height of a coercion.
Thus, the height of any coercion created during program evaluation is never larger
than the height of some coercion in the original elaborated program.

Furthermore, this bound on the height of each coercion in turn guarantees a
bound on the coercion’s size, according to the following lemma. In particular, even
though the length of a coercion sequencec1; . . . ;cn does not contribute to its height,
the restricted structure of well-typed, normalized coercions constrains the length
(and hence size) of such sequences.

Lemma 4. For all well-typed normalized coercions c, size(c) ≤ 5(2height(c) +1).

XXVIII–11

Proof. Induction onc. Assumec = c1; . . . ;cn, where eachci is not a sequential
composition.

Suppose someci = Ref d1 d2. So⊢ ci : Ref S Ref T. Henceci can be pre-
ceded only byRef?, which must be the first coercion in the sequence, and similarly
can be followed only byRef!, which must be the last coercion in the sequence. Thus
in the worst casec = Ref?;Ref d1 d2;Ref! and size(c) = 5+ size(d1) + size(d2).
Applying the induction hypothesis to the sizes ofd1 andd2 yields:

size(c) ≤ 5+2(5(2height(c)−1−1)) = 5(2height(c) −1)

The case forFun d1 d2 is similar. The coercionsI andFail can only appear
alone. Finally, coercions of the formD?;D! are valid. However, composition of
a coercionc matching this pattern with one of the other valid coercions is either
ill-typed or triggers a normalization that yields a coercion identical toc.�

In addition, the height of any coercion created during cast insertion is bounded
by the height of some type in the typing derivation (where theheight of a type is the
height of its abstract syntax tree representation).

Lemma 5. If c = coerce(S,T), then height(c) ≤ max(height(S),height(T)).

Proof. Induction on the structure ofcoerce(S,T).�

Theorem 6 (Size of coercions).For any e, c such that

1. /0 ⊢ e →֒ t : T and

2. t, /0 −→∗ t ′,σ and

3. c occurs in(t ′,σ),

∃S in the derivation of/0 ⊢ e →֒ t : T such that size(c) ≤ 5(2height(S)−1).

Proof. Induction on the length of the reduction sequence, using Lemma 4; the base
case is by induction on the compilation derivation, using Lemma 5.�

We now bound the total cost of maintaining coercions in the space-efficient se-
mantics. We define the size of a program state inductively as the sum of the sizes of
its components. In order to construct a realistic measure ofthe store, we count only
those cells that an idealized garbage collector would consider live by restricting the
sizefunction to the domain of reachable addresses.

size(t,σ) = size(t)+size(σ|reachable(t))

size(σ) = ∑a∈dom(σ)(1+size(σ(a)))

size(k) = size(a) = size(x) = 1
size(λx:T. t) = 1+size(T)+size(t)
size(ref t) = size(!t) = 1+size(t)
size(t1 := t2) = size(t1 t2) = 1+size(t1)+size(t2)
size(〈c〉 t) = 1+size(c)+size(t)

XXVIII–12

To show that coercions occupy bounded space in the model, we compare the size
of program states in reduction sequences to program states in an “oracle” semantics
where coercions require no space. The oracular measuresizeOR is defined similarly
to size, but without a cost for maintaining coercions; that is,sizeOR(c) = 0. The fol-
lowing theorem then bounds the fraction of the program stateoccupied by coercions
in the space-efficient semantics.

Theorem 7 (Space consumption).If /0 ⊢ e →֒ t : T and t, /0 −→∗ t ′,σ, then there
exists some S in the derivation of/0 ⊢ e →֒ t : T such that size(t ′,σ) ∈ O(2height(S) ·
sizeOR(t ′,σ)).

Proof. During evaluation, the[E-CCAST] rule prevents nesting of adjacent coercions
in any term in the evaluation context, redex, or store. Thus the number of coercions
in the program state is proportional to the size of the program state. By Theorem 6
the size of each coercion is inO(2height(S)) for the largestS in the typing ofe.�

6.2 Tail recursion

Theorem 7 has the important consequence that coercions do not affect the control
space consumption of tail-recursive programs. For example, theevenandodd func-
tions mentioned in the introduction now consume constant space. This important
property is achieved by always combining adjacent coercions on the stack via the
[E-CCAST] rule. This section sketches three implementation techniques for this rule.

Coercion-passing style This approach adds an extra argument to every procedure,
representing the result coercion. Tail calls coalesce but do not perform this coercion,
instead passing it along to the next function.

Trampoline A trampoline [14] is a well-known technique for implementing tail-
recursive languages where tail calls are implemented by returning a thunk to a top-
level loop. Tail-recursive functions with coercions return both a thunk and a coercion
to the driver loop, which accumulates and coalesces returned coercions.

Continuation marks Continuation marks [6] allow programs to annotate contin-
uation frames with arbitrary data. When a marked frame performs a tail call, the
subsequent frame can inherit and modify the destroyed frame’s marks. Coercions on
the stack are stored as marks and coalesced on tail calls.

7 EARLY ERROR DETECTION

Consider the following code fragment, which erroneously attempts to convert an
(Int→ Int) function to have type(Bool→ Int):

let f :?= (λx : Int. x) in
let g : (Bool→ Int) = f in . . .

XXVIII–13

Prior strategies for gradual typing would not detect this error until g is applied to a
boolean argument, causing the integer cast to fail.

In contrast, our coercion-based implementation allows us to detect this error as
soon asg is defined. In particular, after cast insertion and evaluation, the value ofg
is

〈Fun Fail I〉 (λx : Int. x)

where the domain coercionFail explicates the inconsistency of the two domain
typesInt andBool. We can modify our semantics to halt as soon as such inconsis-
tencies are detected, by adding the following coercion normalization rules:

Fun c Fail = Fail

Fun Fail c = Fail

Ref c Fail = Fail

Ref Fail c = Fail

Using these rules, our implementation strategy halts as soon asg is defined, resulting
in earlier error detection and better test coverage, sinceg may not actually be called
in some test runs.

8 RELATED WORK

There is a large body of work combining static and dynamic typing. The simplest
approach is to use reflection with the type ?, as in Amber [3]. Since case dispatch
cannot be precisely type-checked with reflection alone, many languages provide
statically-typedtypecase on dynamically-typed values, including Simula-67 [1]
and Modula-3 [4].

For dynamically-typed languages,soft typingsystems provide type-like static
analyses for optimization and early error reporting [25]. These systems may provide
static type information but do not allow explicit type annotations, whereas enforcing
documented program invariants (i.e., types) is a central feature of gradual typing.

Similarly, Henglein’s theory of dynamic typing [17] provides a framework for
static type optimizations but only in a purely dynamically-typed setting. We use Hen-
glein’s coercions instead for structuring the algebra of our cast representation. Our
application is essentially different: in the gradually-typed setting, coercions serve
to enforce explicit type annotations, whereas in the dynamically-typed setting, coer-
cions represent checks required by primitive operations.

None of these approaches facilitatesmigrationbetween dynamically and statically-
typed code, at best requiring hand-coded interfaces between them. The gradually-
typed approach, exemplified by Sage [16] andλ?

→ [22], lowers the barrier for code
migration by allowing mixture of expressions of type ? with more precisely-typed
expressions. Our work improves gradual typing by eliminating the drastic effects
on space efficiency subtly incurred by crossing the boundarybetween typing dis-
ciplines. Siek and Taha’s subsequent work on gradual typingin an object-oriented
setting [23] includes evaluation rules to merge some casts at runtime, but not in a
sufficiently comprehensive manner to be able to prove boundson space consump-
tion.

XXVIII–14

Several other systems employ dynamic function proxies, including hybrid type
checking [12], software contracts [11], and recent work on software migration by
Tobin-Hochstadt and Felleisen [24]. We believe our approach to coalescing redun-
dant proxies could improve the efficiency of all of these systems.

Minamide and Garrigue [20] address a similar issue with unbounded proxies
when optimizing polymorphic functions with monomorphic specializations. They
solve the problem by pairing specialized functions with a pointer to their original
polymorphic function, so subsequent proxies can always be applied to the original
function. They prove the runtime efficiency of their transformation; in our paper we
focus on space efficiency.

9 CONCLUSION AND FUTURE WORK

We have presented a space-efficient implementation strategy for the gradually-typed
λ-calculus. For simplicity, we have presented our work in thecontext of a substitu-
tion semantics. We would like to extend this work to more realistic models of space
consumption for functional languages [21]. Our preliminary results in this direction
are promising. More work remains to demonstrate the applicability of this tech-
nique in the setting of more advanced type systems. In particular, recursive types
and polymorphic types may present a challenge for maintaining constant bounds on
the size of coercions. We intend to explore techniques for representing these infinite
structures as finite graphs.

Another useful feature for runtime checks isblame annotations[11], which pin-
point the particular expressions in the source program thatcause coercion failures at
runtime by associating coercions with the expressions responsible for them. Blame-
tracking improves the error messages for gradually typed programming languages by
pinpointing the culprit of failed casts, and also leads to a stronger and more practical
type soundness theorem. [24]. It should be possible to trackthe minimum amount of
source location information required for tracking blame, combining space-efficient
gradual typing with informative error messages.

ACKNOWLEDGMENTS

David Herman is supported by a grant from the Mozilla Corporation. Aaron Tomb
and Cormac Flanagan are supported by NSF grant CCR-0341179.

REFERENCES

[1] G. Birtwhistle et al.Simula Begin. Chartwell-Bratt Ltd., 1979.

[2] G. Bracha. Pluggable type systems. InWorkshop on Revival of Dynamic Languages,
October 2004.

[3] L. Cardelli. Amber. InSpring School of the LITP on Combinators and Functional
Programming Languages, pages 21–47, 1986.

XXVIII–15

[4] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3
report (revised). Technical Report 52, DEC SRC, 1989.

[5] C. Chambers.The Cecil Language Specification and Rationale: Version 3.0. University
of Washington, 1998.

[6] J. Clements.Portable and high-level access to the stack with Continuation Marks. PhD
thesis, Northeastern University, 2005.

[7] R. B. de Oliveira. The Boo programming language, 2005.

[8] Ecma International.ECMAScript Language Specification, 3rd edition, 1999.

[9] Ecma International.ECMAScript Edition 4 group wiki, 2007.

[10] R. B. Findler and M. Blume. Contracts as pairs of projections. In FLOPS, pages
226–241, 2006.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order functions. InInternational
Conference on Functional Programming, pages 48–59, Oct. 2002.

[12] C. Flanagan. Hybrid type checking. InSymposium on Principles of Programming
Languages, pages 245–256, 2006.

[13] C. Flanagan, S. N. Freund, and A. Tomb. Hybrid types, invariants, and refinements for
imperative objects. InInternational Workshop on Foundations and Developments of
Object-Oriented Languages, 2006.

[14] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In International Con-
ference on Functional Programming, pages 18–27, 1999.

[15] J. J. Garrett. Ajax: A new approach to web applications,2005.

[16] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage: Hybrid check-
ing for flexible specifications. InScheme and Functional Programming Workshop,
September 2006.

[17] F. Henglein. Dynamic typing: Syntax and proof theory.Sci. Comput. Program.,
22(3):197–230, 1994.

[18] J. Matthews and R. B. Findler. Operational semantics for multi-language programs.
In POPL ’07: Conference record of the 34th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2007.

[19] E. Meijer and P. Drayton. Static typing where possible,dynamic typing when needed.
In Workshop on Revival of Dynamic Languages, 2005.

[20] Y. Minamide and J. Garrigue. On the runtime complexity of type-directed unboxing.
In International Conference on Functional Programming, pages 1–12, 1998.

[21] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management.
In International Conference on Functional Programming Languages and Computer
Architecture, pages 66–77, 1995.

[22] J. G. Siek and W. Taha. Gradual typing for functional languages. InScheme and
Functional Programming Workshop, September 2006.

[23] J. G. Siek and W. Taha. Gradual typing for objects. InECOOP 2007: European
Conference on Object-Oriented Programming, Berlin, Germany, July 2007. To appear
(Draft posted on TYPES mailing list, 2/12/2007).

[24] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts to pro-
grams. InDynamic Languages Symposium, October 2006.

[25] A. K. Wright. Practical Soft Typing. PhD thesis, Rice University, Aug. 1998.

XXVIII–16

