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Abstract

Gradual type systems offer a smooth continuum betweerc stati dynamic typing
by permitting the free mixture of typed and untyped code. furdgime systems for
these languages—and other languages with hybrid type ttgeekypically enforce
function types by dynamically generating function proxigsis approach can result
in unbounded growth in the number of proxies, however, wiidstically impacts
space efficiency and destroys tail recursion.

We present an implementation strategy for gradual typiiad) hbased oroercions
instead of function proxies, and which combines adjaceetaions to limit their space
consumption. We prove bounds on the space consumed by aogas well as sound-
ness of the type system, demonstrating that programmersafaty mix typing dis-
ciplines without incurring unreasonable overheads. Opr@gch also detects certain
errors earlier than prior work.

1 GRADUAL TYPING FOR SOFTWARE EVOLUTION

Dynamically typed languages have always excelled at eafmoy programming.

Languages such as Lisp, Scheme, Smalltalk, and JavaSapipdi quick early pro-

totyping and incremental development without the overt@atbcumenting (often-

changing) structural invariants as types. For large agptins, however, static type
systems have proven invaluable. They are crucial for utaieding and enforcing
key program invariants and abstractions, and they catchyraeors early in the

development process.

Given these different strengths, it is not uncommon to entmuhe following
scenario: a programmer builds a prototype in a dynamidgfdgd scripting lan-
guage, perhaps even in parallel to a separate, official aoftwlevelopment pro-
cess with an entire team. The team effort gets mired in psossies and over-
engineering, and the programmer’s prototype ends up gettded in production.
Before long, this hastily conceived prototype grows intaubtftedged production
system, but without the structure or guarantees providestdiic types. The system
becomes unwieldy; QA can't produce test cases fast enoutjbuags start cropping
up that no one can track down. Ultimately, the team decidgmtbthe application
to a statically typed language, requiring a complete rewoftthe entire system.

The cost of cross-language migration is huge and often putgble. But the
scenario above is avoidable. Several languages combitie atel dynamic typ-
ing, among them Boo [7], Visual Basic.NET [19], Sage [16]] &LT Scheme [24].
This approach ohybrid typing where types are enforced with a combination of
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static and dynamic checks, has begun to gain attention irgbearch commu-
nity [5, 16, 22, 24, 19, 2]. Recently, Siek and Taha [22, 23}ed the slogagradual
typing for this important application of hybrid typing: the abjlito implement both
partially-conceived prototypes and mature, productiagieys in the same program-
ming language by gradually introducing type discipline.a@ral typing offers the
possibility of continuous software evolution from protpéyto product, thus avoiding
the huge costs of language migration.

Our recent experience in the working group on the JavaS@ijpdnguage spec-
ification provides a more concrete example. JavaScript yiardically-typed func-
tional programming language that is widely used for samiptiiser interactions in
web browsers, and is a key technology in Ajax applicatiory.[IThe enormous
popularity of the language is due in no small part to its lowrieato entry; anyone
can write a JavaScript program by copying and pasting cama éne web page to
another. Its dynamic type system and fail-soft runtime sgiogallow programmers
to produce something thaeemgo work with a minimum of effort. The increasing
complexity of modern web applications, however, has mivahe addition of a
static type system. The working group’s intention is nottiaredon the dynamically-
typed portion of the language—because of its usefulness@netain backwards
compatibility—but rather to allow typing disciplines totémact via a hybrid system
that supports gradual typirig.

1.1 The Cost of Gradual Typing

Gradually-typed languages support both statically-tygeddynamically-typed code,
and include runtime checks (or type casts) at the boundbegeen these two typ-
ing disciplines, to guarantee that dynamically-typed coaenot violate the invari-
ants of statically-typed code. To illustrate this idea, sidar the following code
fragment, which passes an untyped variabileto a variabley of type Int:

let X=truein ... lety:Int=Xin ...

During compilation, the type checker inserts a dynamic tyget(Int) to enforce
the type invariant ory; at run-time, this cast detects the attempted type viaiatio

let X=truein ... let y:Int = ((Int) X) in ...
—* Error : “failed cast”

Unfortunately, even these simple, first-order type cheeksresult in unexpected
costs, as in the following example, where a programmer hdscagome type anno-
tations to a previously untyped program:

even = An:Int. if (n=0) then true else odd(n—1)
0dd: Int — Bool=An:Int. if (n=0) then false else even(n—1)

1The JavaScript specification is a work in progress, but gabiyping is a key design
goal [9].
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This program seems innocuous, but suffers from a space $a&eevenis dynam-
ically typed, the result of each call &ven(n— 1) must be cast tBoo1l, resulting in
unbounded growth in the control stack and destroying tailirgon.

Additional complications arise when first-class functiamess the boundaries
between typing disciplines. In general, it is not possibleheck if an untyped func-
tion satisfies a particular static type. A natural solutieria wrap the function in a
proxy that, whenever it is applied, casts its argument asdltrgalues appropriately,
ensuring that the function is only observed with its expagtyge. This proxy-based
approach is used heavily in recent literature [11, 12, 16,2P8, but has serious
conseguences for space efficiency.

As a simple example, consider the following program in gumition-passing
style, where both mutually recursive functions take a cwation argumeni, but
only one of these arguments is annotated with a precise type:

even=An:Int. Ak: (?—?). if (n=0) then (ktrue) else odd(n—1)k
odd = An:Int.Ak:(Bool — Bool). if (n=0) then (k false) else even(n—1) k

Here, the recursive calls todd and evenquietly cast the continuation argument
with higher-order castéBool — Bool) and (? —7?), respectively. This means that
the function argumerk is wrapped in an additional function proxy at each recursive
call!

The flexibility promised by gradual typing can only be acle@f programmers
are free to decide how precisely to type various parts of gnara. This flexibility
is lost if adding type annotations can accidentally trigggymptotic changes in its
space consumption. In short, existing implementationnigghes for gradual typing
suffer from unacceptable space leaks.

1.2 Space-Efficient Gradual Typing

We present an implementation strategy for gradual typiaggdiiercomes these prob-
lems. Our approach hinges on the simple insight that wheriggcaccumulate
at runtime, they often contain redundant information. la thgher-order exam-
ple above, the growing chain of function proxies containky émo distinct compo-
nentsBool — Bool and ?—?, which could be merged to the simpler but equivalent
Bool — Bool proxy.

Type casts behave likerror projections[10], which are closed under compo-
sition. However, the syntax of casts does not always comgdosexample, there
is no castc such that(c) e= (Int) (Bool) e. Furthermore, projections are idem-
potent, which should allow us to eliminate duplicate cafist example (Bool —
Bool) (Bool — Bool) e= (Bool — Bool) e. But such transformations are inconve-
nient, if not impossible, with a representation of highestey type casts as functions.

Our formalization instead leverages Hengleia@ercion calculug17], which
provides a syntax for projections, called coercions, whiehclosed under a compo-
sition operator. This allows us to combine adjacent coescia order to eliminate
redundant information and thus guarantee clear boundsamesmpnsumption. By
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eagerly combining coercions, we can also detect certaimeimmediately as soon
as a function cast is applied; in contrast, prior approaet@sid not detect these
errors until the casted function is invoked.

Our approach is applicable to many hybrid-typed languaty2s13, 16] that use
function proxies and hence are prone to space consumptidatepns. For clarity, we
formalize our approach for the simply-typaecalculus with references. Of course,
gradual typing is not restricted to such simple type systéhesSage language [16]
incorporates gradual typing as part of a very expressive system with polymor-
phic functions, type operators, first-class types, depetigpes, general refinement
types, etc. Concurrently, Siek and Taha [22] developedugiiagiping for the simpler
language\?,, which we use as the basis for this presentation.

The presentation of our results proceeds as follows. THewaig section re-
views the syntax and type system)df. Section 3 introduces the coercion algebra
underlying our approach. Section 4 describes how we corapilece programs into
a target language with explicit coercions. Section 5 presidn operational seman-
tics for that target language, and Section 6 proves boundsesspace consumption.
Section 7 extends our approach to detect errors earlier mwvitlp better coverage.
The last two sections place our work into context.

2 GRADUALLY-TYPED LAMBDA CALCULUS

This section reviews the gradually-typ&etalculusA?,. This language is essentially
the simply-typed\-calculus extended with the type ? to represent dynamicstyipe

also includes mutable reference cells to demonstrate tidugt typing of assign-

ments.

Terms: e = Kk|x|Ax:T.e|ee|refe|le|e=e
Types: ST :=B|T—>T|?|Ref T

Terms include the usual constants, variables, abstractemd applications, as
well as reference allocation, dereference, and assignmByes include the dy-
namic type ?, function types — T, reference typeRef T, and some collection of
ground or base typeB (such asInt or Float).

The)?, type system is a little unusual in that it is based on an isit&e consis-
tencyrelationS ~ T instead of the more conventional, transitive subtypingtreh
S <: T. Any type is consistent with the type ?, from which it follotit, for exam-
ple,Bool ~ ? and ?~ Int. However, booleans cannot be used directly as integers,
which is why the consistency relation is not transitivelgsgdd. We do not assume
the consistency relation is symmetric, since a languagédntnfgr example, allow
coercions from integers to floats but not vice-versa.

The consistency relation is defined in Figure 1. R{i@DyNL] and[C-DYNR]
allow all coercions to and from type ?. The rli& FLoOAT] serves as an example of
asymmetry by allowing coercion fromnt to Float but not the reverse. The rule
[C-Fun] is reminiscent of the contravariant/covariant rule fordtion subtyping.
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Figure 1: Source Language Type System

Consistency rules S~ T
[C-REFL] [C-DYNR] [C-DYNL] [C-FLOAT]
T~T T~7? ?~T Int ~ Float
[C-Fun] [C-REeF]
T ~S S~T T~S S~ T
S—9)~(M—T) Ref S~ Ref T
Type rules
[T-VAR] [T-Fun] [T-ConNsT]
(x:T)eE E,x:Ske: T
EFx:T EF(Ax:Se):(S—T) EFk:tyk)
[T-APPL] [T-APP2]
EFe :(S—T) ErFe :S S~S ElFe :? EFe:S
EF(ere): T EF(ee):?
[T-REF] [T-DEREF1] [T-DERER2]
EFe: T EFe:RefT EFe:?
EFrefe:RefT Erle: T EHle:?
[T-AssiGNL] [T-AssIGN2]
EFel:Ref T ErFe:S S~ T Erbe :? Ete: T
EFep=e:S EFe =6 :?

We extend the invariant reference cells\éf to allow coercion fronRef StoRef T
via rule [C-ReF], providedSandT are symmetrically consistent. Unlike functions,
reference cells do not distinguish their output (“readfjeyrom their input (“write”)
type, so coercion must be possible in either direction. kangple, the two reference
typesRef Int andRef ? are consistent.

Figure 1 also presents the type rules for the source langudgeh are mostly
standard. Notice the presence of two separate rules foe@uoe application. Rule
[T-Arprl] handles the case where the operator is statically-typedwseston; in this
case, the argument may have any type consistent with théidaisccdomain. Rule
[T-APr2] handles the case where the operator is dynamically-typedhich case
the argument may be of any type. The two rules for assignnodotvf an analogous
pattern, accepting a consistent type when the left-harglisitnown to have type
Ref T, and any type when the left-hand side is dynamically-tyichilarly, deref-
erence expressions only produce a known type when the arguras a reference

type.
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3 COERCIONS

To achieve a space-efficient implementation, we compilecgoprograms into a
target language with explicit type casts, which allow espr@ns of one type to be
used at any consistent type. Our representation of casésédorcoercions drawn
from Henglein’s theory of dynamic typing [17]. The key benefi coercions over
prior proxy-based representations is that theycmmbinable if two coercions are
wrapped around a function value, then they can be safely tmubnto a single
coercion, thus reducing the space consumption of the progrithout changing its
semantic behavior.

The coercion language and its typing rules are both definddgare 2. The
coercion judgment c: S~ T states that coercion serves to coerce values from
type Sto typeT. The identity coercion (of typet-c: T ~~ T for any T) always
succeeds. Conversely, the failure coerciaril always fails. For each dynamic
type tagD there is an associated tagging coerdidrithat produces values of type ?,
and a corresponding check-and-untag coer€i@rthat takes values of type ?. Thus,
for example, we have Int!: Int ~» ? and- Int?: ?~~ Int.

The function checking coercidfun? converts a value of type ? to have the dy-
namic function type 2-»?. If a more precise function type is required, this value
can be further coerced via a function coerciun ¢ d, wherec coerces function ar-
guments andl coerces results. For example, the coercim(Int? Int!) coerces
from ?—? toInt — Int, by untagging function arguments (Miat?) and tagging
function results (vialnt!). Reference coercions also contain two components: the
first for coercing values put into the reference cell; theosecfor coercing values
read from the cell. Finally, the coerciand represents coercion compositiare.,
the coerciorc followed by coerciord.

This coercion language is sufficient to translate betwetaisistent types:
if typesSandT are consistent, then the following partial functiooercéS T) is
defined and returns the appropriate coercion between thess. t

coerce: Typex Type — Coercion

coercéT,T) = |
coercéB,?) = B!
coercé? B) = B?
coercéInt,Float) = IntFloat
coercdS; — S, Ty — T,) = FuncoercéTy,S) coercéS,, To)
coercé? Ty — T,) = Fun?;coercé? —?,T; — Tp)
coercdTy — Tp,?) = coercdTy — T,,? —7?);Fun!
coercdRef SRef T) = Ref coercdT,S) coercéS T)
coercd? Ref T) = Ref?;,coercdRef ?,Ref T)
coercéRef T,?) = coercéRef T,Ref ?);Ref!
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Figure 2: Coercion Language and Type Rules

Coercions: c¢d ::= | |Fail | D! | D?| IntFloat |Funcc|Ref cc|cC;C
Dynamictags: D ::= B|Fun]|Ref
Coercion rules
[C-ID] [C-FaIL] [C-B!] [C-B?]
FI:T~T FFail:S~T FBlI:B~? FB?:?~B
[C-FuN!] [C-FuN?]
F Fun!: (?—>?) ~? F Fun?: ?~ (? 27
[C-FuN]

Fc:T{~T FepiTow T
F(Funcicp): (T —To) ~ (T = T3)
[C-REF!] [C-REF?]
F Ref!: (Ref ?) ~~? F Ref?:?~ (Ref ?)

[C-REeF]
Fc:T~S Fd:S~T

F(Ref cd): (Ref §)~ (Ref T)

[C-CompPOsH
Fcp:T~Ty Feo:Ti~Ts [C-FLOAT]
F(c;62):T~T F IntFloat: Int ~» Float

Coercing a typdl to itself produces the identity coercion Coercing base typd3

to type ? requires a tagging coerciBh and coercing ? to a base tygerequires

a runtime checlB8?. Function coercions work by coercing their domain and eang
types. The type ? is coerced to a function type via a two-sdepoion: first the value

is checked to be a function and then coerced from the dynamiibn type 2-7?

to T; — T». Dually, typed functions are coerced to type ? via coercioa tynamic
function type followed by the function tagun!. Coercing eRef Sto aRef T entails
coercing all writes fronT to Sand all reads fronsto T. Coercing reference types
to and from ? is analogous to function coercion.

Lemma 1 (Well-typed coercions).
1. S~ T iff coercdS T) is defined.
2. Ifc=coercdST)thentc:S~T.

Proof. Inductions on the derivations &~ T andcoercéS T).
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Figure 3: Target Language Syntax and Type Rules

Terms: st = x|u|tt|reft|!t|t:=t]|(C)t
Values: v = ul{(c)u
Uncoerced values: u:z= Ax:T.t|k|a
Stores: o = 0|cla:=V|
Typing environments: E:=0|Ex:T
Storetypings: X :=0|Za:T
Type rules ‘E;ZH:T E;2Fo
[T-VAR] [T-Fun] [T-ArF|
(x:t)eE Ex:SZFt: T E;ZHt1: (S—T) E;ZFt: S
E;Zbx:T E;ZF (Ax:St): (S—T) E;ZF(tite) : T
[T-REF] [T-DEREH [T-ASSIGN]
E;ZFHt: T E:ZFt:RefT E;ZFt; :Ref T EZFt: T
E;2Freft:RefT E;ZFHIt:T E;ZFty:=t: T
[T-CasT] [T-ADDR]
[T-ConsT] Fc:S~T E;ZFt:S (a:T)ex
E;ZFk: ty(k) E;iZH{(c)t: T E;ZF-a:Ref T

[T-STORE]

dom(o) =dom(%)
Vaedom(o). E;Z+o(a) : Z(a)

E:ZFo

4 TARGET LANGUAGE AND CAST INSERTION

During compilation, we both type check the source prograthiasert explicit type
casts where necessary. The target language of this cagionggocess is essentially
the same as the source, except that it uses explicit cagte édtm (c) t as the only
mechanism for connecting terms of type ? and terms of otlpasty For example,
the term(Int?) X has typelnt, provided thak has type ?. The language syntax and
type rules are defined in Figure 3, and are mostly straightiod. The language also
includes address@swhich refer to a global store, and the store typing environment
2 maps addresses to types.

The process of type checking and inserting coercions isdbred via thecast
insertion judgment

EFe—t:T

Here, the type environmeri provides types for free variables,is the original
source program, is a modified version of the original program with additiosat
ercions, andr is the inferred type fot. The rules defining the cast insertion judg-
ment are shown in Figure 4, and they rely on the partial fonatberceto compute
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Figure 4: Cast Insertion Rules

Cast insertion rules EFe—t:T

[C-VAR] [C-FuN]
(x:T)eE [C-ConsT] E,x:Ske—t:T
EFx—x:T EFk— k:ty(k) EF(Ax:Se) — (Ax:St): (S—T)
[C-APPL]

ElFe —t:(S—T) Ete —t:3S c = coercéS,S)
EFere— (ti((0t2): T

[C-APP2]
EFe —t;:? Erte —t: S c = coercéS,?)

EFee — (((Fun?) ty) () ) :?

[C-ReF] [C-DEREFL] [C-DERER2]
EFe—t:T E-e—t:RefT EFe—1:?
EFrefe— reft :Ref T EHle=!t: T EHe<—!((Ref?)t) :?

[C-AssiGNL]

EFe —t;:RefS ElFe —t: T c=coercéT,S)
ErFeri=e— (1:=({c)t2) : S

[C-AssIGN2]
EFe —t1:? EFe —t: T c= coerceT,?)

Ete i=e < (((Ref?) t1) :=({C) t2)) :?

coercions between types. For example, [@eAprrl] compiles an application ex-
pression where the operator has a function tge T by casting the argument
expression from to typ&. Rule[C-APR2] handles the case where the operator is
dynamically-typed by inserting &un?) check to ensure the operator evaluates to a
function and casting the argument to type ? to yield taggkdga Rule$C-ReF] and
[C-Derer1] handle typed reference allocation and dereference. RUBERER2]
handles dynamically-typed dereference by inserting ame{Ref?) check. Rule
[C-AssigNL] handless statically-typed assignment, casting the hight side to the
expected type of the reference cell, dadAssicN2] handles dynamically-typed as-
signment, casting the left-hand side with a runtitRef?) check and the right-hand
side with a tagging coercion to type ?.

Compilation succeeds on all well-typed source programsd, @oduces only
well-typed target programs.

Theorem 2 (Well-typed cast insertion).For all E, e, and T, the following state-
ments are equivalent:

1. Ete: T
2. dtsuchthatB-e—t: TandEOFt: T
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Proof. Inductions on the cast insertion and source language tygengations.]

5 OPERATIONAL SEMANTICS

We now consider how to implement the target language in a erahiat limits the
space consumed by coercions. The key idea is to combinecadijeasts to eliminate
redundant information while preserving the semantic biehaf programs.

Figure 5 provides the definitions and reduction rules for tdrget language,
using a small-step operational semantics with evaluat@mrtexts. For simplicity,
we present our results here in a substitution semahtidse grammar of evaluation
contextsC is defined to prevent nesting of adjacent casts. This réetri@llows
the most important reduction rulég-CCasT], to ensure that adjacent casts in the
program term are always merged.

In order to maintain bounds on their size, coercions are taiaied normalized
throughout evaluation according to the following rules:

l)c = ¢ D;D? = |

cl = ¢ DI:D’? = Fail if D#D’
Fail;c = Fail (Fun € C);(Fund; dp) = Fun (dg;c1) (C2;02)
C;Fail = Fail (Ref C1 Cz); (Ref di dz) = Ref (dl;Cl) (Cz;dz)

This normalization is applied in a transitive, compatiblarmer whenever the rule
[E-CCasT] is applied, thus bounding the size of coercions during exaln.

Most of the remaining reduction rules are straightforwanmdules[E-BETA],
[E-NEW], [E-DEREH, and[E-AssIiGN are standard. The rulE-Prim] relies on a
type-indexed family of functiondr : Termx Term— Termto define the semantics
of constant functions. We assume eéght to be well-typed and, for simplicity, de-
fined for all constantk: S— T and arguments: S. Rule[E-CAPF applies function
casts by casting the function argument and result. FEH€DeRER casts the result
of reading a cell an{E-CAssiGN casts the value written to a cell and casts the value
again to the expected output type. RUled p] and[E-FCasT] respectively perform
the identity and float coercions, and are restricted to ramt-contexts to prevent
overlap with[E-CCasT].

Evaluation satisfies the usual preservation and progresses.

Theorem 3 (Soundness of evaluation)f 0;0+t : T then either
1. t,0 diverges,
2. 1,0 —* C[(Fail) u],0 0or
3. 1,0 —*v,cand3dZ such thatd;>+v: T and®;Z + a.

Proof. Via standard subject reduction and progress lemmas in yte at Wright
and Felleisen [24]2

2For a discussion of more detailed models of space usageestiors9.
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Figure 5: Operational Semantics

Evaluation Contexts: C:=e|(Ct)|(vC)|refC|!IC|C:=t|v:=C|{(c)D
Nested Contexts: Di=e|(Ct)| (vC)|refC|!IC|C:=t|v:i=C

C[(Ax:S.'t)v],0 — C[t[x:=V]],0 [E-BETA]

Clrefvl,0 — C[a],cla:=V]| for a ¢ dom(o) [E-NEW]

Clla,c — Clao(a)],o [E-DEREA

Cla:=v],0 — C|v],0la:=V] [E-AssIGN

Ckv,0 — C[dywk(kV),0 [E-PRIM]

C[((Funcd)u)v],0 — C[{d) (u({c)V))],0 [E-CAPH

C[!/((Refcd)a)l,o0 — C[(d)!a],0 [E-CDEREA

Cl((Ref cd)a):=v],0 — C[(d) (a:={(c)V)],0 [E-CASSIGN

Cl(l)u,0 — Clu],0 if C#£C/[(C) o] [E-ID]

C[{IntFloat) nj,c — C[nearestFloatn)],o if C#C/[(c)e] [E-FCAST]

Cl{c) ((d)t)],0 — C[{d;c)t],0 [E-CCasT]

6 SPACE EFFICIENCY

We now consider how much space coercions consume at ruridgganing with an
analysis of how much space each individual coercion canurnas

6.1 Space Consumption

The size of a coerciosiz€c) is defined as the size of its abstract syntax tree rep-
resentation. When two coercions are sequentially compasddormalized during
evaluation, the size of the normalized, composed coerciay o course be larger
than either of the original coercions. In order to reasoruitite space required by
such composed coercions, we introduce a notion oh#ightof a coercion:

heightl) = heightFail) = heightD!) = height D?) = 1
heightRef ¢ d) = height{Fun ¢ d) = 1+ maxheight(c), height(d))
height(c;d) = maxheightc), heightd))

Notably, the height of a composed coercion is bounded by iwamum height of
its constituents. In addition, normalization never insesathe height of a coercion.
Thus, the height of any coercion created during programuetiahn is never larger
than the height of some coercion in the original elaboratednam.

Furthermore, this bound on the height of each coercion in guarantees a
bound on the coercion’s size, according to the followingriem In particular, even
though the length of a coercion sequerge . . ;c, does not contribute to its height,
the restricted structure of well-typed, normalized caarsi constrains the length
(and hence size) of such sequences.

Lemma 4. For all well-typed normalized coercions c, sizg < 5(2"¢19M°) 4 1),
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Proof. Induction onc. Assumec = ci;...;C,, Where eaclt; is not a sequential
composition.

Suppose somg = Ref d; d>. Sot ¢ : Ref S~ Ref T. Hencec; can be pre-
ceded only byref?, which must be the first coercion in the sequence, and siynila
can be followed only bef!, which must be the last coercion in the sequence. Thus
in the worst cas& = Ref?;Ref d;i dy;Ref! and siz&c) = 5+ siz€d;) + siz€dy).
Applying the induction hypothesis to the sizesdgfandd, yields:

size(c) < 5+ 2(5(2"®19M)~1 _ 1)) — p(gheightc) _ 1)

The case foFun d; dy is similar. The coercions andFail can only appear
alone. Finally, coercions of the forin?;D! are valid. However, composition of
a coercionc matching this pattern with one of the other valid coercian®ither
ill-typed or triggers a hormalization that yields a coercidentical toc. [

In addition, the height of any coercion created during casgiition is bounded
by the height of some type in the typing derivation (wherehbight of a type is the
height of its abstract syntax tree representation).

Lemma 5. If c = coercdS T), then heightc) < max heightS), height(T)).
Proof. Induction on the structure abercéS T). O
Theorem 6 (Size of coercions)-or any e, ¢ such that
1. 0Fe—1t:Tand
2. ,0 —*t',oand
3. coccurs int’,0),
3S in the derivation oD+ e — t : T such that sizg) < 5(2"¢'9"(S _ 1),

Proof. Induction on the length of the reduction sequence, usingrharm; the base
case is by induction on the compilation derivation, usinghbea 5.1

We now bound the total cost of maintaining coercions in thecegefficient se-
mantics. We define the size of a program state inductivelpesum of the sizes of
its components. In order to construct a realistic measutieo$tore, we count only
those cells that an idealized garbage collector would dendive by restricting the
sizefunction to the domain of reachable addresses.

sizgt,0) = sizgt) + Size(dreachablét))

SiZ€0) = S acdonto) (1 + Siz&0(a)))

sizdk) = sizda) = sizex) =1

SizgAx:T.t) = 1+ sizdT) + sizdt)

sizdref t) = sizd!t) = 1+ siz€t)

sizdt) :=ty) = sizdt; t;) = 1+ sizét; ) + sizety)
sizg(c) t) = 1+ sizgc) + sizgt)
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To show that coercions occupy bounded space in the modelpmeare the size
of program states in reduction sequences to program states‘dracle” semantics
where coercions require no space. The oracular meas&eag is defined similarly
to size but without a cost for maintaining coercions; thatsge,z(c) = 0. The fol-
lowing theorem then bounds the fraction of the program steteipied by coercions
in the space-efficient semantics.

Theorem 7 (Space consumption)f 0-e — t: T andt0 —*t', 0, then there
exists some S in the derivation®f e — t : T such that sizg’, ) € O(2"¢1gn(S) .

size(t’,0)).

Proof. During evaluation, th¢e-CCasT] rule prevents nesting of adjacent coercions
in any term in the evaluation context, redex, or store. Theswumber of coercions
in the program state is proportional to the size of the pnogséate. By Theorem 6
the size of each coercion is @(2"€9"(S)) for the largesSin the typing ofe.

6.2 Tail recursion

Theorem 7 has the important consequence that coercionstdafect the control
space consumption of tail-recursive programs. For exantipevenandodd func-
tions mentioned in the introduction now consume constaatep This important
property is achieved by always combining adjacent coescimmthe stack via the
[E-CCasT] rule. This section sketches three implementation teclasidor this rule.

Coercion-passing style This approach adds an extra argument to every procedure,
representing the result coercion. Tail calls coalesce duind perform this coercion,
instead passing it along to the next function.

Trampoline A trampoline [14] is a well-known technique for implemergitail-
recursive languages where tail calls are implemented lyniglg a thunk to a top-
level loop. Tail-recursive functions with coercions retloth a thunk and a coercion
to the driver loop, which accumulates and coalesces reduraercions.

Continuation marks Continuation marks [6] allow programs to annotate contin-
uation frames with arbitrary data. When a marked frame pad$oa tail call, the
subsequent frame can inherit and modify the destroyed fsamerks. Coercions on
the stack are stored as marks and coalesced on tail calls.

7 EARLY ERROR DETECTION

Consider the following code fragment, which erroneoustgrapts to convert an
(Int — Int) function to have typ€Bool — Int):

let f:?=(AX:Int.X) in
let g: (Bool — Int) = f in ...
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Prior strategies for gradual typing would not detect thimeuntil g is applied to a
boolean argument, causing the integer cast to fail.

In contrast, our coercion-based implementation allowsousetect this error as
soon agy is defined. In particular, after cast insertion and evatutthe value ofy
is

(FunFaill) (AX: Int. X)

where the domain coerciofail explicates the inconsistency of the two domain
typesInt andBool. We can modify our semantics to halt as soon as such inconsis-
tencies are detected, by adding the following coercion adigation rules:

Fun CcFail = Fail Ref CFail = Fail
FunFailc = Fail Ref Failc = Fail

Using these rules, our implementation strategy halts as asgis defined, resulting
in earlier error detection and better test coverage, ginoay not actually be called
in some test runs.

8 RELATED WORK

There is a large body of work combining static and dynamidcniyp The simplest
approach is to use reflection with the type ?, as in Amber [&cé&case dispatch
cannot be precisely type-checked with reflection alone, yranguages provide
statically-typedt ypecase on dynamically-typed values, including Simula-67 [1]
and Modula-3 [4].

For dynamically-typed languagespft typingsystems provide type-like static
analyses for optimization and early error reporting [23}e$e systems may provide
static type information but do not allow explicit type anatidns, whereas enforcing
documented program invariants (i.e., types) is a centedlife of gradual typing.

Similarly, Henglein’s theory of dynamic typing [17] prowd a framework for
static type optimizations but only in a purely dynamicaiped setting. We use Hen-
glein’s coercions instead for structuring the algebra of@ast representation. Our
application is essentially different: in the graduallyp#yl setting, coercions serve
to enforce explicit type annotations, whereas in the dyoaly+-typed setting, coer-
cions represent checks required by primitive operations.

None of these approaches facilitategrationbetween dynamically and statically-
typed code, at best requiring hand-coded interfaces bettiesn. The gradually-
typed approach, exemplified by Sage [16] aid [22], lowers the barrier for code
migration by allowing mixture of expressions of type ? witlona precisely-typed
expressions. Our work improves gradual typing by elimmgtihe drastic effects
on space efficiency subtly incurred by crossing the bountiatyeen typing dis-
ciplines. Siek and Taha's subsequent work on gradual tyimiram object-oriented
setting [23] includes evaluation rules to merge some cdstsndime, but not in a
sufficiently comprehensive manner to be able to prove boondspace consump-
tion.
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Several other systems employ dynamic function proxiedudticg hybrid type
checking [12], software contracts [11], and recent work oftveare migration by
Tobin-Hochstadt and Felleisen [24]. We believe our apgrdaccoalescing redun-
dant proxies could improve the efficiency of all of these eyt.

Minamide and Garrigue [20] address a similar issue with unlded proxies
when optimizing polymorphic functions with monomorphicesgalizations. They
solve the problem by pairing specialized functions with &y to their original
polymorphic function, so subsequent proxies can alwaysppéeal to the original
function. They prove the runtime efficiency of their tramgfiation; in our paper we
focus on space efficiency.

9 CONCLUSION AND FUTURE WORK

We have presented a space-efficient implementation syrégethe gradually-typed
A-calculus. For simplicity, we have presented our work ind¢batext of a substitu-
tion semantics. We would like to extend this work to moreistial models of space
consumption for functional languages [21]. Our prelimjngersults in this direction
are promising. More work remains to demonstrate the agpmlitaof this tech-
nique in the setting of more advanced type systems. In péaticrecursive types
and polymorphic types may present a challenge for maimgioonstant bounds on
the size of coercions. We intend to explore techniques fimesenting these infinite
structures as finite graphs.

Another useful feature for runtime checksiame annotation§l1], which pin-
point the particular expressions in the source programcthiadée coercion failures at
runtime by associating coercions with the expressionsoresple for them. Blame-
tracking improves the error messages for gradually typednamming languages by
pinpointing the culprit of failed casts, and also leads ttbr@nger and more practical
type soundness theorem. [24]. It should be possible to treckninimum amount of
source location information required for tracking blamembining space-efficient
gradual typing with informative error messages.
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